Excel中有两个函数是用来计算标准差的:stdev.S和stdev.P
使用场景:
当你只知道一小部分样本,想要通过其【估算】这部分【样本代表的总体】的【标准差】——选择stdev.S(2010版之后叫stdev.S,老版叫stdev。这个S就是sample,样本的意思)
当你拿到的数据已经是整体数据了,想要计算这部分数据精确的标准差——选择stdev.P(2010版之后叫stdev.P,老版叫stdevP。这个P我猜是population,在统计学上有“总体”之意)
举个栗子🌰
源数据如下图:
情况一:拿着总体数据求总体的标准差
如果,我想求这些人身高和体重的标准差,那么就应该用stdev.P来求,因为上面这些数据就是一个总体了。
因为知道了总体,而求总体的标准差,所以结果是精确的哦~~
结果如图
情况二:拿着样本数据估算样本代表的总体的标准差
同样是上述这些数据,但我想要通过这些人作为样本,估算出这些人代表的学生群体的身高和体重的标准差。这个时候就要用stdev.S了。
结果如图
为啥同样的一群数据会得到两种不同的结果呢?
对一个总体求真实的标准差,公式应为:
然而大多数时候,我们得不到那么完整的总体,只能通过代表总体的样本对总体进行估算。
虽然说样本能够代表总体,但毕竟样本数量是要少很多很多的,这就导致样本里面出现异常值的可能性会比总体更少,也就会导致样本的标准差比总体的标准差小。毕竟标准差反应数据距离平均值的差异情况嘛~
为了让样本的标准差能够离总体的标准差更近一些、进而达到代替总体标准差的目的。
在利用样本估算总体标准差时,将原式中分母里的N,改为N-1。分母变小,最后的结果自然变大了。这样才更接近总体的标准差呀~
(网上的表述很容易让人误会,我加了几个字,这样更容易懂些)