本文整理汇总了Python中IPython.display.Image方法的典型用法代码示例。如果您正苦于以下问题:Python display.Image方法的具体用法?Python display.Image怎么用?Python display.Image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块IPython.display的用法示例。
在下文中一共展示了display.Image方法的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。
示例1: AddMLPModel
点赞 6
# 需要导入模块: from IPython import display [as 别名]
# 或者: from IPython.display import Image [as 别名]
def AddMLPModel(model, data):
size = 28 * 28 * 1
sizes = [size, size * 2, size * 2, 10]
layer = data
for i in range(len(sizes) - 1):
layer = brew.fc(model, layer, 'dense_{}'.format(i), dim_in=sizes[i], dim_out=sizes[i + 1])
layer = brew.relu(model, layer, 'relu_{}'.format(i))
softmax = brew.softmax(model, layer, 'softmax')
return softmax
# ### LeNet Model Definition
#
# **Note**: This is the model used when the flag *USE_LENET_MODEL=True*
#
# Below is another possible (and very powerful) architecture called LeNet. The primary difference from the MLP model is that LeNet is a Convolutional Neural Network (CNN), and therefore uses convolutional layers ([Conv](https://caffe2.ai/docs/operators-catalogue.html#conv)), max pooling layers ([MaxPool](https://caffe2.ai/docs/operators-catalogue.html#maxpool)), [ReLUs](https://caffe2.ai/docs/operators-catalogue.html#relu), *and* fully-connected ([FC](https://caffe2.ai/docs/operators-catalogue.html#fc)) layers. A full explanation of how a CNN works is beyond the scope of this tutorial but here are a few good resources for the curious reader:
#
# - [Stanford cs231 CNNs for Visual Recognition](http://cs231n.github.io/convolutional-networks/) (**Recommended**)
# - [Explanation of Kernels in Image Processing](https://en.wikipedia.org/wiki/Kernel_%28image_processing%29)
# - [Convolutional Arithmetic Tutorial](http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html)
#
# Notice, this function also uses Brew. However, this time we add more than just FC and Softmax layers.
# In[5]:
开发者ID:facebookarchive,项目名称:tutorials,代码行数:27,
示例2: show
点赞 6
# 需要导入模块: from IPython import display [as 别名]
# 或者: from IPython.display import Image [as 别名]
def show(self, exec_widget=True):
super(Viewer, self).show()
self.viewAll()
rec = self.app.desktop().screenGeometry()
self.move(rec.width() - self.size().width(),
rec.height() - self.size().height())
if not exec_widget:
timer = QtCore.QTimer()
# timer.timeout.connect(self.close)
timer.singleShot(20, self.close)
self.app.exec_()
try:
from IPython.display import Image
return Image(self.name)
except ImportError as e:
print(e)
开发者ID:coin3d,项目名称:pivy,代码行数:18,
示例3: logoNotebook
点赞 6
# 需要导入模块: from IPython import display [as 别名]
# 或者: from IPython.display import Image [as 别名]
def logoNotebook(symbol, token='', version='', filter=''):
'''This is a helper function, but the google APIs url is standardized.
https://iexcloud.io/docs/api/#logo
8am UTC daily
Args:
symbol (string); Ticker to request
token (string); Access token
version (string); API version
filter (string); filters: https://iexcloud.io/docs/api/#filter-results
Returns:
image: result
'''
_raiseIfNotStr(symbol)
url = logo(symbol, token, version, filter)['url']
return ImageI(url=url)
开发者ID:timkpaine,项目名称:pyEX,代码行数:20,
示例4: embed_mp4_as_gif
点赞 6
# 需要导入模块: from IPython import display [as 别名]
# 或者: from IPython.display import Image [as 别名]
def embed_mp4_as_gif(filename):
""" Makes a temporary gif version of an mp4 using ffmpeg for embedding in
IPython. Intended for use in Jupyter notebooks. """
if not os.path.exists(filename):
print('file does not exist.')
return
dirname = os.path.dirname(filename)
basename = os.path.basename(filename)
newfile = tempfile.NamedTemporaryFile()
newname = newfile.name + '.gif'
if len(dirname) != 0:
os.chdir(dirname)
os.system('ffmpeg -i ' + basename + ' '