python display方法_Python display.Image方法代码示例

本文详细介绍了Python中的IPython.display.Image方法,包括如何使用它展示图像,并给出了29个实用代码示例,涵盖了从图像加载到显示的各种应用场景。适合正在学习Python图像处理和IPython库的开发者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文整理汇总了Python中IPython.display.Image方法的典型用法代码示例。如果您正苦于以下问题:Python display.Image方法的具体用法?Python display.Image怎么用?Python display.Image使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在模块IPython.display的用法示例。

在下文中一共展示了display.Image方法的29个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于我们的系统推荐出更棒的Python代码示例。

示例1: AddMLPModel

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def AddMLPModel(model, data):

size = 28 * 28 * 1

sizes = [size, size * 2, size * 2, 10]

layer = data

for i in range(len(sizes) - 1):

layer = brew.fc(model, layer, 'dense_{}'.format(i), dim_in=sizes[i], dim_out=sizes[i + 1])

layer = brew.relu(model, layer, 'relu_{}'.format(i))

softmax = brew.softmax(model, layer, 'softmax')

return softmax

# ### LeNet Model Definition

#

# **Note**: This is the model used when the flag *USE_LENET_MODEL=True*

#

# Below is another possible (and very powerful) architecture called LeNet. The primary difference from the MLP model is that LeNet is a Convolutional Neural Network (CNN), and therefore uses convolutional layers ([Conv](https://caffe2.ai/docs/operators-catalogue.html#conv)), max pooling layers ([MaxPool](https://caffe2.ai/docs/operators-catalogue.html#maxpool)), [ReLUs](https://caffe2.ai/docs/operators-catalogue.html#relu), *and* fully-connected ([FC](https://caffe2.ai/docs/operators-catalogue.html#fc)) layers. A full explanation of how a CNN works is beyond the scope of this tutorial but here are a few good resources for the curious reader:

#

# - [Stanford cs231 CNNs for Visual Recognition](http://cs231n.github.io/convolutional-networks/) (**Recommended**)

# - [Explanation of Kernels in Image Processing](https://en.wikipedia.org/wiki/Kernel_%28image_processing%29)

# - [Convolutional Arithmetic Tutorial](http://deeplearning.net/software/theano_versions/dev/tutorial/conv_arithmetic.html)

#

# Notice, this function also uses Brew. However, this time we add more than just FC and Softmax layers.

# In[5]:

开发者ID:facebookarchive,项目名称:tutorials,代码行数:27,

示例2: show

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def show(self, exec_widget=True):

super(Viewer, self).show()

self.viewAll()

rec = self.app.desktop().screenGeometry()

self.move(rec.width() - self.size().width(),

rec.height() - self.size().height())

if not exec_widget:

timer = QtCore.QTimer()

# timer.timeout.connect(self.close)

timer.singleShot(20, self.close)

self.app.exec_()

try:

from IPython.display import Image

return Image(self.name)

except ImportError as e:

print(e)

开发者ID:coin3d,项目名称:pivy,代码行数:18,

示例3: logoNotebook

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def logoNotebook(symbol, token='', version='', filter=''):

'''This is a helper function, but the google APIs url is standardized.

https://iexcloud.io/docs/api/#logo

8am UTC daily

Args:

symbol (string); Ticker to request

token (string); Access token

version (string); API version

filter (string); filters: https://iexcloud.io/docs/api/#filter-results

Returns:

image: result

'''

_raiseIfNotStr(symbol)

url = logo(symbol, token, version, filter)['url']

return ImageI(url=url)

开发者ID:timkpaine,项目名称:pyEX,代码行数:20,

示例4: embed_mp4_as_gif

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def embed_mp4_as_gif(filename):

""" Makes a temporary gif version of an mp4 using ffmpeg for embedding in

IPython. Intended for use in Jupyter notebooks. """

if not os.path.exists(filename):

print('file does not exist.')

return

dirname = os.path.dirname(filename)

basename = os.path.basename(filename)

newfile = tempfile.NamedTemporaryFile()

newname = newfile.name + '.gif'

if len(dirname) != 0:

os.chdir(dirname)

os.system('ffmpeg -i ' + basename + ' ' + newname)

try:

with open(newname, 'rb') as f:

display(Image(f.read(), format='png'))

finally:

os.remove(newname)

开发者ID:openradar,项目名称:TINT,代码行数:23,

示例5: save_to_img

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def save_to_img(src, output_path_name, src_type = "tensor", channel_order="cwd", scale = 255):

if src_type == "tensor":

src_arr = np.asarray(src) * scale

elif src_type == "array":

src_arr = src*scale

else:

print("save tensor error, cannot parse src type.")

return False

if channel_order == "cwd":

src_arr = (np.moveaxis(src_arr,0,2)).astype(np.uint8)

elif channel_order == "wdc":

src_arr = src_arr.astype(np.uint8)

else:

print("save tensor error, cannot parse channel order.")

return False

src_img = PIL.Image.fromarray(src_arr)

src_img.save(output_path_name)

return True

开发者ID:zhuhao-nju,项目名称:hmd,代码行数:20,

示例6: display_graph

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def display_graph(g, format='svg', include_asset_exists=False):

"""

Display a TermGraph interactively from within IPython.

"""

try:

import IPython.display as display

except ImportError:

raise NoIPython("IPython is not installed. Can't display graph.")

if format == 'svg':

display_cls = display.SVG

elif format in ("jpeg", "png"):

display_cls = partial(display.Image, format=format, embed=True)

out = BytesIO()

_render(g, out, format, include_asset_exists=include_asset_exists)

return display_cls(data=out.getvalue())

开发者ID:zhanghan1990,项目名称:zipline-chinese,代码行数:19,

示例7: _jplot

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def _jplot(*args):

from IPython.display import Image

with _MAGICS_LOCK:

f, tmp = tempfile.mkstemp(".png")

os.close(f)

base, ext = os.path.splitext(tmp)

img = output(

output_formats=["png"],

output_name_first_page_number="off",

output_name=base,

)

all = [img]

all.extend(args)

_plot(all)

image = Image(tmp)

os.unlink(tmp)

return image

开发者ID:ecmwf,项目名称:magics-python,代码行数:25,

示例8: draw

​点赞 6

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def draw(self, layout='neato', **kwargs):

""" Draw the graph.

Optional layout=['neato'|'dot'|'twopi'|'circo'|'fdp'|'nop']

will use specified graphviz layout method.

:param layout: pygraphviz layout algorithm (default: 'neato')

:type layout: str

"""

f, filePath = tempfile.mkstemp(suffix='.png')

self.g.layout(prog=layout)

self.g.draw(filePath)

i = Image(filename=filePath)

display(i)

os.close(f)

os.remove(filePath)

开发者ID:sys-bio,项目名称:tellurium,代码行数:18,

示例9: forward

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def forward(self, input):

# Return itself + the result of the two convolutions

output = self.model(input) + input

return output

# Image transformation network

开发者ID:AlexiaJM,项目名称:Deep-learning-with-cats,代码行数:8,

示例10: macho_example11

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def macho_example11():

picture = Image(filename='_static/curvas_ejemplos11.jpg')

picture.size = (100, 100)

return picture

# the library

开发者ID:quatrope,项目名称:feets,代码行数:8,

示例11: AddLeNetModel

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def AddLeNetModel(model, data):

'''

This part is the standard LeNet model: from data to the softmax prediction.

For each convolutional layer we specify dim_in - number of input channels

and dim_out - number or output channels. Also each Conv and MaxPool layer changes the

image size. For example, kernel of size 5 reduces each side of an image by 4.

While when we have kernel and stride sizes equal 2 in a MaxPool layer, it divides

each side in half.

'''

# Image size: 28 x 28 -> 24 x 24

conv1 = brew.conv(model, data, 'conv1', dim_in=1, dim_out=20, kernel=5)

# Image size: 24 x 24 -> 12 x 12

pool1 = brew.max_pool(model, conv1, 'pool1', kernel=2, stride=2)

# Image size: 12 x 12 -> 8 x 8

conv2 = brew.conv(model, pool1, 'conv2', dim_in=20, dim_out=50, kernel=5)

# Image size: 8 x 8 -> 4 x 4

pool2 = brew.max_pool(model, conv2, 'pool2', kernel=2, stride=2)

# 50 * 4 * 4 stands for dim_out from previous layer multiplied by the image size

# Here, the data is flattened from a tensor of dimension 50x4x4 to a vector of length 50*4*4

fc3 = brew.fc(model, pool2, 'fc3', dim_in=50 * 4 * 4, dim_out=500)

relu3 = brew.relu(model, fc3, 'relu3')

# Last FC Layer

pred = brew.fc(model, relu3, 'pred', dim_in=500, dim_out=10)

# Softmax Layer

softmax = brew.softmax(model, pred, 'softmax')

return softmax

# The `AddModel` function below allows us to easily switch from MLP to LeNet model. Just change `USE_LENET_MODEL` at the very top of the notebook and rerun the whole thing.

# In[6]:

开发者ID:facebookarchive,项目名称:tutorials,代码行数:36,

示例12: interactive

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def interactive( animation, size = 320 ):

basedir = mkdtemp()

basename = join( basedir, 'graph' )

steps = [ Image( path ) for path in render( animation.graphs(), basename, 'png', size ) ]

rmtree( basedir )

slider = widgets.IntSlider( min = 0, max = len( steps ) - 1, step = 1, value = 0 )

return widgets.interactive( lambda n: display(steps[ n ]), n = slider )

开发者ID:mapio,项目名称:GraphvizAnim,代码行数:9,

示例13: display_upstream_structure

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def display_upstream_structure(structure_dict):

"""Displays pipeline structure in the jupyter notebook.

Args:

structure_dict (dict): dict returned by

:func:`~steppy.base.Step.upstream_structure`.

"""

graph = _create_graph(structure_dict)

plt = Image(graph.create_png())

display(plt)

开发者ID:sattree,项目名称:gap,代码行数:12,

示例14: showarray

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def showarray(a, fmt='jpeg'):

a = np.uint8(np.clip(a, 0, 255))

f = StringIO()

PIL.Image.fromarray(a).save(f, fmt)

display(Image(data=f.getvalue()))

开发者ID:graphific,项目名称:DeepDreamVideo,代码行数:7,

示例15: showarrayHQ

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def showarrayHQ(a, fmt='png'):

a = np.uint8(np.clip(a, 0, 255))

f = StringIO()

PIL.Image.fromarray(a).save(f, fmt)

display(Image(data=f.getvalue()))

# a couple of utility functions for converting to and from Caffe's input image layout

开发者ID:graphific,项目名称:DeepDreamVideo,代码行数:9,

示例16: prepare_guide

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def prepare_guide(net, image, end="inception_4c/output", maxW=224, maxH=224):

# grab dimensions of input image

(w, h) = image.size

# GoogLeNet was trained on images with maximum width and heights

# of 224 pixels -- if either dimension is larger than 224 pixels,

# then we'll need to do some resizing

if h > maxH or w > maxW:

# resize based on width

if w > h:

r = maxW / float(w)

# resize based on height

else:

r = maxH / float(h)

# resize the image

(nW, nH) = (int(r * w), int(r * h))

image = np.float32(image.resize((nW, nH), PIL.Image.BILINEAR))

(src, dst) = (net.blobs["data"], net.blobs[end])

src.reshape(1, 3, nH, nW)

src.data[0] = preprocess(net, image)

net.forward(end=end)

guide_features = dst.data[0].copy()

return guide_features

# -------

# Make dreams

# -------

开发者ID:graphific,项目名称:DeepDreamVideo,代码行数:33,

示例17: resizePicture

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def resizePicture(image,width):

img = PIL.Image.open(image)

basewidth = width

wpercent = (basewidth/float(img.size[0]))

hsize = int((float(img.size[1])*float(wpercent)))

return img.resize((basewidth,hsize), PIL.Image.ANTIALIAS)

开发者ID:graphific,项目名称:DeepDreamVideo,代码行数:8,

示例18: morphPicture

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def morphPicture(filename1,filename2,blend,width):

img1 = PIL.Image.open(filename1)

img2 = PIL.Image.open(filename2)

if width is not 0:

img2 = resizePicture(filename2,width)

return PIL.Image.blend(img1, img2, blend)

开发者ID:graphific,项目名称:DeepDreamVideo,代码行数:8,

示例19: to_notebook

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def to_notebook(self, transparent_bg=True, scale=(1, 1)):

# if not in_notebook():

# raise ValueError("Cannot find notebook.")

wimg = self._win2img(transparent_bg, scale)

writer = BSPNGWriter(writeToMemory=True)

result = serial_connect(wimg, writer, as_data=False).result

data = memoryview(result).tobytes()

from IPython.display import Image

return Image(data)

开发者ID:MICA-MNI,项目名称:BrainSpace,代码行数:12,

示例20: logos

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def logos():

display(Image('images/calpoly_logo.png'))

display(Image('images/ipython_logo.png'))

开发者ID:ellisonbg,项目名称:talk-2014-strata-sc,代码行数:5,

示例21: draw_tree

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def draw_tree(self, fname, footer):

dot = [Digraph()]

dot[0].attr(kw='graph', label = footer)

count = [0]

self.draw(dot, count)

Source(dot[0], filename = fname + ".gv", format="png").render()

display(Image(filename = fname + ".gv.png"))

开发者ID:moshesipper,项目名称:tiny_gp,代码行数:9,

示例22: show_img_arr

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def show_img_arr(arr):

im = PIL.Image.fromarray(arr)

bio = BytesIO()

im.save(bio, format='png')

display(Image(bio.getvalue(), format='png'))

# write log in training phase

开发者ID:zhuhao-nju,项目名称:hmd,代码行数:9,

示例23: verts2obj

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def verts2obj(out_verts, filename):

vert_num = len(out_verts)

faces = np.load("../predef/smpl_faces.npy")

face_num = len(faces)

with open(filename, 'w') as fp:

for j in range(vert_num):

fp.write( 'v %f %f %f\n' % ( out_verts[j,0], out_verts[j,1], out_verts[j,2]) )

for j in range(face_num):

fp.write( 'f %d %d %d\n' % (faces[j,0]+1, faces[j,1]+1, faces[j,2]+1) )

PIL.Image.fromarray(src_img.astype(np.uint8)).save("./output/src_img_%d.png" % test_num)

return True

# compute anchor_posi from achr_verts

开发者ID:zhuhao-nju,项目名称:hmd,代码行数:15,

示例24: _display_bot_response

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def _display_bot_response(response: Dict):

from IPython.display import Image, display

for response_type, value in response.items():

if response_type == 'text':

print_success(value)

if response_type == 'image':

image = Image(url=value)

display(image,)

开发者ID:RasaHQ,项目名称:rasa_core,代码行数:12,

示例25: showBGRimage

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def showBGRimage(a, fmt='jpeg'):

a = np.uint8(np.clip(a, 0, 255))

a[:,:,[0,2]] = a[:,:,[2,0]] # for B,G,R order

f = StringIO()

PIL.Image.fromarray(a).save(f, fmt)

display(Image(data=f.getvalue()))

开发者ID:CUHKSZ-TQL,项目名称:EverybodyDanceNow_reproduce_pytorch,代码行数:8,

示例26: showmap

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def showmap(a, fmt='png'):

a = np.uint8(np.clip(a, 0, 255))

f = StringIO()

PIL.Image.fromarray(a).save(f, fmt)

display(Image(data=f.getvalue()))

#def checkparam(param):

# octave = param['octave']

# starting_range = param['starting_range']

# ending_range = param['ending_range']

# assert starting_range <= ending_range, 'starting ratio should <= ending ratio'

# assert octave >= 1, 'octave should >= 1'

# return starting_range, ending_range, octave

开发者ID:CUHKSZ-TQL,项目名称:EverybodyDanceNow_reproduce_pytorch,代码行数:15,

示例27: test_append_display_data

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def test_append_display_data():

widget = widget_output.Output()

# Try appending a Markdown object.

widget.append_display_data(Markdown("# snakes!"))

expected = (

{

'output_type': 'display_data',

'data': {

'text/plain': '',

'text/markdown': '# snakes!'

},

'metadata': {}

},

)

assert widget.outputs == expected, repr(widget.outputs)

# Now try appending an Image.

image_data = b"foobar"

image_data_b64 = image_data if sys.version_info[0] < 3 else 'Zm9vYmFy\n'

widget.append_display_data(Image(image_data, width=123, height=456))

expected += (

{

'output_type': 'display_data',

'data': {

'image/png': image_data_b64,

'text/plain': ''

},

'metadata': {

'image/png': {

'width': 123,

'height': 456

}

}

},

)

assert widget.outputs == expected, repr(widget.outputs)

开发者ID:luckystarufo,项目名称:pySINDy,代码行数:40,

示例28: show_image

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def show_image(image_path):

display(Image(image_path))

image_rel = image_path.replace(root,'')

caption = "Image " + ' - '.join(attributions[image_rel].split(' - ')[:-1])

display(HTML("

%s
" % caption))

开发者ID:googlecodelabs,项目名称:tensorflow-for-poets-2,代码行数:8,

示例29: parrot

​点赞 5

# 需要导入模块: from IPython import display [as 别名]

# 或者: from IPython.display import Image [as 别名]

def parrot():

from IPython.display import Image

from IPython.display import display

import os

filename = os.path.dirname(__file__) + '\\parrot.gif'

try:

return display(Image(filename=filename, format='png'))

except:

print ':sad_parrot: Looks like the parrot is not available!'

开发者ID:Quantipy,项目名称:quantipy,代码行数:11,

注:本文中的IPython.display.Image方法示例整理自Github/MSDocs等源码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值