c++ocx交互检测弹框_基于无人机航拍图像检测玉米雄穗

点击蓝色字709a7d579b729567bca6b39742fa230e.png免费订阅,每天收到这样的好资讯

本文通过Faster R-CNN目标检测算法对无人机航拍的大田玉米雄穗图像进行自动检测,植物表型资讯介绍如下。

0b716799b90a887ce815ccde9f4d8956.gif

玉米雄穗及其性状与玉米产量密切相关,是育种研究中很重要表型指标。传统依靠人工观测玉米雄穗耗时耗力。本研究通过基于无人机航拍图像,采用Faster R-CNN目标检测算法高通量的自动检测雄穗数量。文中图像获取来源丰富,有地面拍照获取的高分辨率图像、有15m高空中拍摄的玉米图像。在兼顾通量和图像质量的情况下,即使15m高度的无人机图像,检测精度也能达到90%。文中通过进一步修改Faster R-CNN目标检测算法中anchor值,达到检测图像中不同大小玉米雄穗的目的。

bf4ae3136a1957d5f62ec40b4d65218d.png

图1.基于Faster R-CNN算法检测玉米雄穗方法概述

作者介绍:

论文第一作者为刘云玲博士,论文通讯作者为马韫韬博士。中国农业大学数字农业研究团队,主要研究方向为多源尺度的植物功能-结构-环境互作的基因型/表型研究。包括植物根/冠生长与环境交互模型、植物三维表型与基因型关联模型、基于无人机和高精度遥感的植物动态生长监测等研究。长期招收多名硕士、博士研究生和合作博士后的研究,有意者请联系:yuntao.ma@cau.edu.cn.

来源:

Liu, Y.; Cen, C.; Che, Y.; Ke, R.; Ma, Y.; Ma, Y. Detection of Maize Tassels from UAV RGB Imagery with Faster R-CNN. Remote Sens. 2020, 12(2), 338; https://doi.org/10.3390/rs12020338.

CCTV纪录片里的植物表型

扩展阅读:

植物表型资讯两周年目录汇总

植物表型资讯2019年1-12月目录汇总

植物表型资讯2020年1月目录汇总

7cf7787acf572404bf22430784560872.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值