python心电图分类_使用Python+TensorFlow2构建基于卷积神经网络(CNN)的ECG心电信号识别分类(三)...

本文介绍了如何使用Python和TensorFlow2进行心电图(ECG)分类,重点讨论了心电信号的噪声类型如工频干扰、肌电干扰和基线漂移,以及利用小波变换进行预处理和去噪的步骤,包括软阈值函数的应用。通过9尺度小波分解和软阈值滤波,实现了心电信号的降噪,提高了后续分类的准确性。
摘要由CSDN通过智能技术生成

心电信号的噪声

EGG信号具有微弱、低幅值、低频、随杋性的特点,很容易被噪声干扰,而噪声可能来自生物体内,如呼吸、肌肉颤抖,也可能因为接触不良而引起体外干扰。是ECG信号主要的三种噪声为工频干扰、肌电干扰和基线漂移3,也是在滤波过程中急需被抑制去除的噪声干扰。

工频干扰:是由采集心电信号的设备周身的供电环境引起的电磁干扰,幅值低,噪声频率为50Hz左右,其波形很像一个正弦信号,该噪声常常会淹没有用的心电信号,也会影响P波和T波的检测。

肌电干扰:在心电图采集过程中,因为人体运动肌肉不自主颤抖造成,这种干扰无规律可言,波形形态会急速变化,频率很高,并且分布很广,范围在0-2000Hz内,能量集中在30-300Hz内,持续时间一般为50ms,肌电干扰与心电信号会重合在一起,这会导致有用的心电信号细微的变化很可能被忽视。

基线漂移:属于低频干扰,频率分布在0.15-0.3Hz内,由于电极位置的滑动变化或者人体的呼吸运动造成心电信号随时间缓慢变化而偏离正常基线位置产生基线漂移,幅度和频率都会时刻变化着。心电信号中的PR波段和ST波段非常容易受到影响产生失真。

心电信号的预处理

小波变换(Wavelet Transform, WT)可以进行时频变换,是对信号进行时域以及频域分析的最为理想工具。本文对含噪心电信号采用基于小波变换的去噪处理方法,分为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值