howell

I just follow my heart ! ! !

Robberies HDU 2955 DP 01 背包

Robberies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 28847    Accepted Submission(s): 10591


Problem Description
The aspiring Roy the Robber has seen a lot of American movies, and knows that the bad guys usually gets caught in the end, often because they become too greedy. He has decided to work in the lucrative business of bank robbery only for a short while, before retiring to a comfortable job at a university.


For a few months now, Roy has been assessing the security of various banks and the amount of cash they hold. He wants to make a calculated risk, and grab as much money as possible.


His mother, Ola, has decided upon a tolerable probability of getting caught. She feels that he is safe enough if the banks he robs together give a probability less than this.
 

Input
The first line of input gives T, the number of cases. For each scenario, the first line of input gives a floating point number P, the probability Roy needs to be below, and an integer N, the number of banks he has plans for. Then follow N lines, where line j gives an integer Mj and a floating point number Pj . 
Bank j contains Mj millions, and the probability of getting caught from robbing it is Pj .
 

Output
For each test case, output a line with the maximum number of millions he can expect to get while the probability of getting caught is less than the limit set.

Notes and Constraints
0 < T <= 100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0 <= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume that all probabilities are independent as the police have very low funds.
 

Sample Input
3 0.04 3 1 0.02 2 0.03 3 0.05 0.06 3 2 0.03 2 0.03 3 0.05 0.10 3 1 0.03 2 0.02 3 0.05
 

Sample Output
2 4 6
 

Source
 
题意:一个强盗要去抢劫银行,对于每个银行来说,都有一个被抓的概率p,和能抢劫到的钱数money,每个银行最多只可以被抢劫一次。问在被抓的总概率低于P的情况下下,怎样获得的钱最多。
注意:不要误以为精度只有两位。

分析:

子问题:dp[ j ] 抢劫 j 这么多钱安全的最大概率;

子问题的状态:dp[ j ] ;

状态转移方程:dp[ j ] = max( dp[ j ], dp[ j - m[ i ] ]*P[ i ] );

代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+7;
int m[maxn];
double dp[maxn], P[maxn];

int main()
{
    int t, n;
    double p;
    scanf("%d",&t);
    while(t--)
    {
         int sum  = 0;
         scanf("%lf%d", &p, &n);
         p = 1 - p;
         for(int i = 0; i < n; i++){
            scanf("%d%lf", &m[i], &P[i]);
            P[i] = 1 - P[i]; sum += m[i];
         }
         memset(dp, 0, sizeof(dp));
         dp[0] = 1;
         for(int i = 0; i < n; i++)
            for(int j = sum; j >= m[i]; j--) dp[j] = max(dp[j], (dp[j - m[i]]*P[i]));
         for(int i = sum; i >= 0; i--)
         if(dp[i] > p) {
            printf("%d\n",i);
            break;
         }
    }
    return 0;
}

阅读更多
版权声明: https://blog.csdn.net/weixin_39792252/article/details/79966407
个人分类: 动态规划 HDU
上一篇Help Jimmy POJ - 1661
下一篇Ubuntu 安装.bin文件
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭