java怎么做沙子合并_dp之沙子合并 环形沙子合并 沙子合并加强 沙子三兄弟的故事...

沙子合并加强

沙子合并问题

问题描述:设有N堆沙子排成一排,其编号为1,2,3,…,N(N<=2000)。每堆沙子有一定的数量,可以用一个整数来描述,现在要将这N堆沙子合并成为一堆,每次只能合并相邻的两堆,合并的代价为这两堆沙子的数量之和,合并后与这两堆沙子相邻的沙子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同,如有4堆沙子分别为 1  3  5  2 我们可以先合并1、2堆,代价为4,得到4 5 2 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24,如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22;问题是:找出一种合理的方法,使总的代价最小。输出最小代价。

输入:

第一行一个数N表示沙子的堆数N。

第二行N个数,表示每堆沙子的质量。

输出:

合并的最小代价以及每一步合并的方法(输出每次合并后的沙子的最小编号和最大编号)

样例:

输入:

4

13 7 6 5

输出:

60

3 4

2 4

1 4

来,先看看,找不同

总结一下第一题数据范围300,第二题范围不变,但是变成了一个环,第三题数据范围变成了2000

朴素的沙子合并算法

dp(i,j)表示把i到j这一段沙子合并成为一堆沙子,所需要的最小代价

那么一定是由某两堆合并而来的

所以dp(i,j)=min{dp(i,k)+dp(k+1,j)}+sum[j]-sum[i-1]

这样的算法O(n^3)只能过第一个吧

没事,老大被解决了

第二题是环形的

如果每个起始位置都被枚举一遍的话

就是O(n^4),过不了,所以,我们力求一个更加高效的算法。

解决问题题的方法有两种,一种是继承,这里不讨论,还有一种是展环为链(一种解决环形dp的最佳方法)

我们复制序列一遍,将它粘贴在第一个序列的末尾,构成2n-1的序列,然后对这个序列做区间dp

所以最佳解一定是一个子问题,这下子复杂度最高(2n-1)^2,可以勉勉强强的过吧

然后第三题就麻烦了n<=2000

n^3绝对超时,肿么办呢。

这就是一套全新的理论,四边形优化

理论如下

DP的四边形优化

一、进行四边形优化需要满足的条件

1、状态转移方程如下:

43c9f19d19aefeb9e5a9e4261e7597cd.png

m(i,j)表示对应i,j情况下的最优值。

w(i,j)表示从i到j的代价。

例如在合并石子中:

m(i,j)表示从第i堆石子合并到j堆石子合并成一堆的最小代价。

w(i,j)表示从第i堆石子到第j堆石子的重量和。

2、函数w满足区间包含的单调性和四边形不等式

b0ffe8e8560185c0549cb88a6b3755a2.png

二、满足上述条件之后的两条定理

1、假如函数w满足上述条件,那么函数m也满足四边形不等式,即

f3a83bc83aff7ab1d07a64d80fa3fd97.png

例如:

假如有:w(1, 3) + w(2, 4) £ w(2, 3) + w(1, 4),

m(1, 3) + m(2, 4) £ m(2, 3) + m(1, 4),

2、假如m(i, j)满足四边形不等式,那么s (i, j)单调,即:

4e6085ef5117ed9602bcdd9e088db3c8.png

m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max)

上述的m(i,j)表示区间[i,j]上的某个最优值。w(i,j)表示在转移时需要额外付出的代价。该方程的时间复杂度为O(N3)

下面我们通过四边形不等式来优化上述方程,首先介绍什么是“区间包含的单调性”和“四边形不等式”

1、区间包含的单调性:如果对于 i≤i'

2、四边形不等式:如果对于 i≤i'

下面给出两个定理:

1、如果上述的 w 函数同时满足区间包含单调性和四边形不等式性质,那么函数 m 也满足四边形不等式性质

我们再定义 s(i,j) 表示 m(i,j) 取得最优值时对应的下标(即 i≤k≤j 时,k 处的 w 值最大,则 s(i,j)=k)。此时有如下定理

2、假如 m(i,j) 满足四边形不等式,那么 s(i,j) 单调,即 s(i,j)≤s(i,j+1)≤s(i+1,j+1)。

好了,有了上述的两个定理后,我们发现如果w函数满足区间包含单调性和四边形不等式性质,那么有 s(i,j-1)≤s(i,j)≤s(i+1,j) 。

即原来的状态转移方程可以改写为下式:

m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(s(i,j-1)≤k≤s(i+1,j))(min也可以改为max)

由于这个状态转移方程枚举的是区间长度 L=j-i,而 s(i,j-1) 和 s(i+1,j) 的长度为 L-1,是之前已经计算过的,可以直接调用。

不仅如此,区间的长度最多有n个,对于固定的长度 L,不同的状态也有 n 个,故时间复杂度为 O(N^2),而原来的时间复杂度为 O(N^3),实现了优化!

今后只需要根据方程的形式以及 w 函数是否满足两条性质即可考虑使用四边形不等式来优化了。

以上描述状态用 m(i,j),后文用的 dp[i][j],所代表含意是相同的,特此说明。

以石子合并问题为例。

例如有6堆石子,每堆石子数依次为3 4 6 5 4 2

因为是相邻石子合并,所以不能用贪心(每次取最小的两堆合并),只能用动归。(注意:环形石子的话,必须要考虑最后一堆和第一堆的合并。)

例如:一个合并石子的方案:

第一次合并 3 4 6 5 4 2 ->7

第二次合并 7 6 5 4 2 ->13

第三次合并 13 5 4 2 ->6

第四次合并 13 5 6 ->11

第五次合并 13 11 ->24

总得分=7+6+11+13+24=61 显然,比贪心法得出的合并方案(得分:62)更优。

动归分析类似矩阵连乘等问题,得出递推方程:

设 dp[i][j] 表示第 i 到第 j 堆石子合并的最优值,sum[i][j] 表示第 i 到第 j 堆石子的总数量。

(可以在计算开始先做一遍求所有的 sum[i],表示求出所有第1堆到第i堆的总数量。则 sum[i][j]=sum[j]-sum[i]。这样计算比较快。)

那么就有状态转移公式:

7f872462058d67047c625ba30881659f.png

这里 i<=k

普通解法需要 O(n^3)。下面使用四边形不等式进行优化。

首先判断是否符合区间单调性和四边形不等式。

i  i'    j    j'

3 4 6 5 4 2

单调性:

w[i',j] = 4+6+5=15 w[i,j'] =3+4+6+5+4+2=24

故w[i',j] <= w[i,j'] 满足单调性

四边形不等式:

w[i,j] + w[i',j'] = (3+4+6+5) + (4+6+5+4+2) = 18+21 = 39

w[i',j] + w[i,j'] = (4+6+5) + (3+4+6+5+4+2) = 15 + 24 = 39

故 w[i,j] + w[i',j'] <= w[i',j] + w[i,j']

故石子合并可利用四边形不等式进行优化。

利用四边形不等式,将原递推方程的状态转移数量进行压缩(即缩小了k的取值范围)。

令 s[i][j]=min{k | dp[i][j] = dp[i][k-1] + dp[k][j] + w[i][j]},即计算出 dp[i][j] 时的最优的 k 值(本例中寻优为取最小)

也可以称为最优决策时的 k 值。由于决策 s 具有单调性,因此状态转移方程中的 k 的取值范围可修改为 :

s[i,j-1] <= s[i,j] <= s[i+1,j]

边界:s[i,i] = i

因为 s[i,j] 的值在 m[i,j] 取得最优值时,保存和更新,因此 s[i,j-1] 和 s[i+1,j] 都在计算 dp[i][j-1] 以及 dp[i+1][j] 的时候已经计算出来了。

因此,s[i][j] 即 k 的取值范围很容易确定。

根据改进后的状态方程,以及 s[i][j] 的定义方程,可以很快的计算出所有状态的值。计算过程可以如下表所示(类似于矩阵连乘的打表)。

状态表(如果是环形石子合并,需要打2n*2n的表)

3 4 6 5 4 2

ca6c01181821881d4980fdbcf4ed6921.png

例如:

计算dp[1][3],由于s[1][2]=1,s[2][3]=2,则k值的取值范围是1<=k<=2

则,dp[1][3]=min{dp(1,1)+dp(2,3)+13, dp(1,2)+dp(3,3)+13}=min{10+13, 7+13}=20,将其填到状态表。同时,由于取最优值的k等于2,则将其填到s表。

同理,可以计算其他状态表和s表中的值。

dp[2][4]=min{dp(2,2)+dp(3,4)+15, dp(2,3)+dp(4,4)+15}=min{11+15, 10+15}=25

k=3

从表中可以看出,当计算dp[2][5]的时候,由于s[ i,j-1]=s[ 2,4]=3,s[ i+1,j]=s[3,5]=3,此时k的取值范围已经限定为只有一个,大幅缩短了寻找最优解的时间。

于是乎,复杂度降到了O(n^2)

厉害吧O(∩_∩)O哈哈~

附上代码

#include#include#include#include#include#include#include#include#include#include#include

#define mod 998244353

#define N 100005

#define pi acos(-1)

#define inf 0x7fffffff

#define ll long long

using namespacestd;

ll read()

{

ll x=0,f=1;char ch=getchar();while(ch'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;

}intn;int a[305],sum[305];int f[305][305];int dp(int l,intr)

{if(f[l][r]!=-1)returnf[l][r];if(l==r)return 0;int ans=inf;for(int i=l;i

ans=min(ans,dp(l,i)+dp(i+1,r));return f[l][r]=(ans+sum[r]-sum[l-1]);

}intmain()

{

memset(f,-1,sizeof(f));

n=read();for(int i=1;i<=n;i++)a[i]=read();for(int i=1;i<=n;i++)sum[i]=sum[i-1]+a[i];

printf("%d\n",dp(1,n));return 0;

}

#include#include

using namespacestd;int v[1001],sum[1001],f[1001][1001];intmain()

{int n,mi=9999999;

scanf("%d",&n);for(int i=1;i<=2*n-1;i++)for(int j=i+1;j<=2*n-1;j++)

f[i][j]=999999;int p=0;for(int i=1;i<=n;i++)

{

scanf("%d",&v[i]);

sum[i]=sum[i-1]+v[i];

}for(int i=1;i

{

v[++p]=v[i];

sum[p+n]=sum[p+n-1]+v[i];

}for(int i=2*n-1;i>=1;i--)for(int j=i+1;j<=i+n-1;j++)for(int k=i;k

f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum[j]-sum[i-1]);for(int i=1;i<=n;i++)

mi=min(mi,f[i][i+n-1]);

printf("%d",mi);return 0;

}

#include#include

#define N 2000+1

#define INF 0x3fffffff

using namespacestd;intv[N],sum[N];structdata{intval,des;

};

data f[N][N];void output(int k,int i,intj);intmain()

{intn;

scanf("%d",&n);for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)

f[i][j].val=INF;for(int i=1;i<=n;i++)

{

scanf("%d",&v[i]);

sum[i]=sum[i-1]+v[i];

f[i][i].des=i;

}for(int i=n;i>=1;i--)for(int j=i+1;j<=n;j++)

{int begin=f[i][j-1].des;int end=min(j-1,f[i+1][j].des);for(int k=begin;k<=end;k++)

{if(f[i][j].val>f[i][k].val+f[k+1][j].val+sum[j]-sum[i-1])

{f[i][j].des=k;f[i][j].val=f[i][k].val+f[k+1][j].val+sum[j]-sum[i-1];}

}

}

printf("%d\n",f[1][n].val);

output(f[1][n].des,1,n);//printf("%d",f[1][n].des);

return 0;

}void output(int k,int i,intj)

{if(i==j)return;

output(f[i][k].des,i,k),output(f[k+1][j].des,k+1,j);

printf("%d %d\n",i,j);

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值