dynamo方程怎么写_恰当微分方程及分项组合法

本文详细介绍了如何求解一阶恰当微分方程,重点讲解了分项组合法,通过实例展示了如何运用这一方法进行求解。此外,还提到了积分因子和全微分在解决这类问题中的作用,以及在实际教材中可能存在的不足,为工科学生提供了清晰的学习指导。
摘要由CSDN通过智能技术生成

2e824a1f67ce3e8e41adca91e9f2a263.png

恰当微分方程在求解中本身是比较简单的。

但是在同济的《高等数学》里面十分悲惨的放在了线积分的全微分求积一节的“*”里面,用了不到两页的篇幅(我一直以为在全微分一节里面…找了半天没有,目录也没有,一页一页翻才翻到)。但毕竟不是微分方程的书,也不能强求。

而在高等教育出版社的《常微分方程》里面,讲得也不尽人意。讲到分项组合法的时候就开始大跃进了。明明是好方法,但是为什么就…不能讲完整一点呢? 实际上,完整、高效的方法在《常微分方程学习辅导与习题解答》的一阶偏微分方程首次积分的一节才有所明确展示。

鉴于此,稍微整理一下,得到这篇笔记。

另外,积分因子这部分不会写在里面,因为这个操作是比较简单的,而且与笔记的主旨关系不大。


正文

作为一位工科学生,文章的重点自然不是恰当微分方程的概念等前置内容,而是具体的求解方法(技巧)。或者说,这篇笔记的重点在“分项组合法”。(前面的内容完全可以略过。)

不过,还是有必要引入一下。

微分方程:

对于一阶导数(微分),符号自然是想怎么用就怎么用(大雾)。将求导视为微商,那么则有微元

。一般来说总是
是自变量,
是因变量,但在微分方程里面,二者可以完全视为“平级”的。那么,自然可以写成以下形式:

如果恰好有一个二元函数

,使得:

那么,方程化为:

由一点点全微分的知识就可以得到:

满足这样条件的方程称为恰当微分方程。最后的等式

自然就是所要求的方程的解。其隐式的定义了
的关系。

在这里应当有两个直观的体验:

1、当在恰当微分方程中,视

为二元函数
的变量之后,它们的的确确是平级了的。

2、全微分完全可以视作正常的一元微分。

特别是第二点,它预示着我们完全可以像操作

一样操作
.通俗地说,可以随意玩弄符号(大雾)。

当然,还有恰当微分方程的判定:

最后,恰当微分方程的求解就是:找到那个恰到好处的函数

.

最基本的操作就是:

先通过其中一个,如

,可得:

其中

是视
为常数,仅仅是对
做不定积分的意思,那么就是能够求出来的部分。于是只需要确定
.

接下来由

,可得:

于是最后再通过一个“偏积分”就可求得

条理是很清楚的。以上只是演示求

的过程,完全不是作为公式来使用,也不需要记公式。

分项组合法

如果都是这么求恰当微分方程,那就完了(不是)。于是有了“分项组合法”。但也是从这里开始,书上的说明就开始大跃进了。

窃以为,最好应当从

开始说起。

无论怎么说,

总可以分成三部分:

即:只含

的函数、只含
的函数,同时含有
的函数。对
求偏导看其如何变化。

可见,对

求偏导的时候只含
的函数没了,反之亦然。这是显然的。但更重要的是,需要看到,对
求偏导的时候含
的函数依旧含
,反之亦然;而同时含有
的函数(包括微分),依旧存在,不会消失。

(比如

。虽然前面的函数是单元的,但是包括微分在内就是双元的了)

看全微分如何变化:

而从

,由和法则可以得到:

对比上下两个全微分的式子,就可以得到:

看上去,这似乎是很显然的东西。但实际上,它告诉了这样一个事实:即使是多元微分,符号也是想怎么玩就怎么玩(大雾)。唯一需要注意的是:单元的微分,一项便可确定;双元的微分,需要两项才可以确定。

这样,逆向使用这个推导的过程,就是分项组合法的操作过程:由各项分别凑微分。

单元的就凑单元的微分,多元的就成对地凑多元的微分。最后凑完微分之后用和法则加在一起。

在这里再推导一个“极其实用”的方法才进入例题。

对于

的式子,最常见的就是积的形式:

考察

的全微分,有:

在各微分式里面,不妨视微分变量的另一个变量的函数为常数。然后在微分式内再凑微分。那么就有:

将前面的全微分式也展开来写,就有很工整的对称式:

反过来,就是凑微分的过程。而且这个“公式”极其好记忆。(为什么?)

不负责任的说,99%的恰当微分方程的求解,若需要求

的话,就可以到这个公式。

例:

的全微分

积形式的全微分,形象的说就是:

其中

是单元的函数。或者说,微分号
分割出这两个不同的函数。如果分割前后的函数对应一致,那么就可以写出乘积的微分。

那么对于上面要求的微分式来说,第一项已经分开了,而第二项并没有,

前面的函数同时有两个元。那么用偏积分的方式把
放进微分里面:

可见:1、两个

都分开了两个单元的函数。2、
前后的函数分别对应一致。

那么就可以愉快的写出来:

(不过其实完全没必要用这个公式…直接求偏积分就好了,不过为了防止“两个双元的微分式子才凑出一个微分出来”这样的情况的忘记,就不得已用此下策,不过还挺不错的 /捂脸

什么叫“防止‘两个双元的微分式子才凑出一个微分出来’”?看到后面就知道了/逃)

[1]求解方程

的确是恰当微分方程的。那么拆开:

分别凑微分,并加在一起就有:

最后即得:

部分的全微分

当然不会止步于此。实际上,虽然积形式的微分可以说是最常用的了,但是仅仅于此还不能解决某些凑微分的形式。比如:

这些全微分是《常微分方程》里面的[2],而且说:“这种方法[3]要求熟记一些简单的二元函数的全微分,如[4]”上面的那两个全微分就是书上所列出来的后两个。至于前面的四个,有一个已经在例题里面不需要记忆地解决掉了。那么这两个呢?

可以发现,的确不能凑成积形式的全微分形式。但,这也不至于手无足措。只需要用上积形式的全微分方法,加上一点点的操作:

前面反复强调,即使是全微分,其本身也不过是一个普普通通的微分。一元微分所拥有的操作都可以在全微分上面使用。如果在凑

的微分式中先构造出了“一部分的全微分”,那么那一部分的全微分式就是可以当成普通的微分来使用的。

用符号来表示,有:

是仅显由
构成的函数。
是函数
的原函数。这么说起来有点玄乎,不妨以上面的第一个做例子。

对于:

分子是构不成全微分的,差了一个负号。按照在例题的经验,分子分母先除以

,分子就可以构造全微分了:

恰到好处的形式。令

,就有:

看上去,这和不定积分的换元法十分相似。

可以计算,除以

也可以得到一样的结果,并且后面那个全微分式也是一样的计算;还可以发现,除以负号所在的微分的变量的平方(也就是
),在用积形式的凑微分时,能够恰好消掉负号;进一步的话,还可以认为这个分式是齐二次的(
这样的全微分式若将外面的东西放进去,那么
里面的就是二次的。),所以似乎分母是齐二次的都可以这么做;再联想一下的话,似乎积分因子的构建就是这样的?(无端)…

附加的说明

担心总还是有的,不可能是万能的方法。但是面对大多数的恰当微分方程的题目,应该是没问题了的。

如果不是积形式的呢?指数函数,三角函数什么的总让人担心会出问题。

例:

的全微分是
,反向求出全微分的函数

例:

的全微分是
,反向求出全微分的函数

例:

的全微分是
,反向求出全微分的函数

(面对单纯的

反倒有些手足无措…啊,已经是微分了,只要加起来就好了)

似乎不是直接的积形式的,而是部分的积形式的话,也总能“部分地”凑出那个积形式的部分。然后用微分的运算解决。

如果像

这样没有一点积形式的呢?从
怎么得到全微分的形式?

答:用不了积形式的求法的话,那就分别直接求偏积分就好了

最后那个等式很奇怪?我也觉得很奇怪(大雾)。

当然不是这样,“偏积分”这种操作单独用于一个微分式里面当然是错误的。即第一个等号并不成立。应该跳过中间那个项直接得到最后面。但这样的话要看出来会更困难。为了计算的方便,还是写出来偏积分的结果吧,然后最后记得两个得合并成一个。

(小更新一下。

老师上课上到线积分这里,突然想着翻一翻以前写的文章。然后就发现了上面这个例题实际上也是可以不用“求偏积分”这样“不自然”的方法的:

依旧是只用了积形式的全微分和部分的全微分的操作。不用分别求偏积分再加起来看上去是舒服得多了。)

正是这种合并总是容易忘记而导致错误,所以能用积形式的还是用积形式比较好。实在是积形式的用不了了,那就直接求偏积分吧。不过不要忘了最后,偏积分所得到的两个微分应当合成一个;而正常的单个元得到的微分,依旧很正常。

换元法

除此之外,还会出现这样的情况:

例:

的全微分是
求全微分的函数。

显然这不应该是积形式的全微分了。因为这里存在同时含有

和式的式子,就不易拆开然后以
的形式计算。

面对这种情况我们可以像面对有这样类似形状的积分式一样处理,但是又有点不同。如果有这样的积分式:

我们可以直接令分母的

。但是这里毕竟是有两个变量的,因此要做两个变量的变换。其中一个变量自然就是分母的那一部分了,另外一个没有要求的话就尽量简单就好:

令:

代入即得:

这样的操作,在分子更为复杂的时候效果或许会更好,比如:

相比于化简来说,直接求偏积分或许会有点无所适从…

参考

  1. ^王高雄,周之铭,朱思铭,等.常微分方程[M]北京:高等教育出版社,2006.07:55
  2. ^王高雄,周之铭,朱思铭,等.常微分方程[M]北京:高等教育出版社,2006.07:54
  3. ^指分项积分的方法
  4. ^王高雄,周之铭,朱思铭,等.常微分方程[M]北京:高等教育出版社,2006.07:54
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值