一. SVR原理简述
在前面的文章中详细讨论过关于线性回归的公式推导,线性回归传送站。线性回归的基本模型为:
从图例中分析,支持向量机回归与线性回归相比,支持向量回归表示只要在虚线内部的值都可认为是预测正确,只要计算虚线外部的值的损失即可。考虑到SVM中线性不可分的情形,在引入松弛变量
本文介绍了支持向量机回归(SVR)的基本原理,对比了SVR与线性回归的区别,并通过引入拉格朗日乘数和核函数进行公式推导。接着,文章提供了Python中使用sklearn库实现SVR的代码示例,特别是针对多输出情况的SVR应用。
一. SVR原理简述
在前面的文章中详细讨论过关于线性回归的公式推导,线性回归传送站。线性回归的基本模型为:
从图例中分析,支持向量机回归与线性回归相比,支持向量回归表示只要在虚线内部的值都可认为是预测正确,只要计算虚线外部的值的损失即可。考虑到SVM中线性不可分的情形,在引入松弛变量

被折叠的 条评论
为什么被折叠?