已知三角形三点坐标求角度_【中考专题】角系列之坐标系中的特殊角问题

本文探讨了平面直角坐标系中的特殊角,包括45°、30°、60°等,强调特殊角在于其三角函数值的特殊性。介绍了在坐标系中构造和处理特殊角的方法,如利用三角函数值构造三垂直相似或全等,以及通过三角函数值转化为直线斜率。并通过中考真题展示了特殊角在实际问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

01

什么是特殊角?

说到特殊角我们很快就能想到比如30°、45°、60°、90°等,事实上,之所以以上角能称为特殊角,关键在于这些角的三角函数值特殊,比如同为整十,为什么我们会将60°称为特殊角,而50°便不是,原因很简单,cos60°=1/2,而我们并不知道50°的任一三角函数值.

因此角度特殊不在于这个角是多少度,而在于其三角函数值是否有特殊值,所以除了常见的30°、45°、60°,我们可以扩充一下特殊角的范围.

4a675fcca3f328157ad6779a92f64fed.png

以及从最后一张图中可得二倍角或者半角的三角函数构造.

比如求tan15°:

28b589df9b7c2783a3efb9437348e41d.png

tan22.5°:

1db97292490df0e263d7d168486a5713.png

一般半角三角函数值求法:

f5c125102ad75ce6262cf31be9d12dda.png

一般二倍角函数值求法:

acec3b1cb9f18d945a2d191044f10670.png

02

坐标系中的特殊角

当我们初次接触到平面直角坐标系时,我们就认识了一、三象限角平分线及二、四象限角平分线,即直线y=x和直线y=-x,在一次函数中我们知道,若两直线平行,则k相等.

综合以上两点,可得:对于直线y=x+m或直线y=-x+m,与x轴夹角为45°.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值