已知三角形三点坐标求角度_【八年级下】数学 · 一次函数与三角形面积的铅垂线法...

关于一次函数,我们已经为大家推送了不少微课、重难点专项,今天为大家推送一次函数与面积结合问题,分两讲:动点和铅垂线法。今天我们两讲,这一讲为大家讲解一次函数与三角形面积的铅垂线法!话不多说,请看下文↓↓

一.问题分析

我们知道,一次函数的图像是一条直线,其与坐标轴围成一个三角形,若要求这个“坐标三角形”的面积,则只要知道其与x轴,y轴的交点坐标即可,难度不大,故不展开.

但如果有两条直线相交,你会求它们与坐标轴围成的三角形面积吗?

甚至如果有三条直线相交,你能求出这三条直线围成的三角形面积吗?

本讲就主要研究后2类问题及其变式.

二.实例感悟

(1)两线与一轴

即有两条直线相交,分别求两直线与x轴,y轴围成的三角形面积.

例1:

已知直线y1=-x+3与y2=x+1,求两直线与坐标轴围成的三角形面积.

分析:

显然,我们要先求出5个关键点的坐标,y1与x轴交点A的坐标,与y轴交点B的坐标,y2与x轴交点C的坐标,与y轴交点D的坐标,以及y1与y2的交点E的坐标.并确定△CEA是两直线与x轴围成的三角形,△DEB是两直线与y轴围成的三角形.

d018ad7f830439259845cd6fff797981.png
d76c42d072c42c6e8079704edbd4529f.png

小结:

我们发现,三角形的底和高是可以不断变化的,如果两个点均在x轴上,则用横坐标相减的绝对值表示两点间的距离,若两个点均在y轴上,则用纵坐标相减的绝对值表示两点间的距离,当然,明确左右和上下的情况下,右减左和上减下,可保证为正.

变式1:

直线y1=k1x+b1(k1>0)和直线y2=k2x+b2(k2<0)相交于点(-2,0),且两直线与y轴所围成的三角形面积是4,求b1-b2.

解析:

77fc56e9ceed0607deca0d305d21bf26.png
8e743e1b89e7f4a3fd1e7518ffdbc8a7.png

变式2:

在平面直角坐标系中,一条直线经过A(-1,5),B(-2,a),C(3,-3)三点,这条直线与y轴交于点D,求△OBD的面积.

解析:

同样操作,先将这条直线的解析式求出,从而知道点B的坐标,与y轴交点D的坐标,画出草图,谁为高,谁为底,一目了然.

dabf69275d7213a5470e2085b69ee0b3.png
cff678ce8c71900930a65e5cfd4ff203.png

变式3:

直线y=kx+3(k<0)与x轴,y轴分别交于A,B两点,OB:OA=3:4,点C为直线上一动点,若△AOC面积为4,求点C坐标.

分析:

首先,可知点B坐标(0,3),OB=3,则OA=4,再根据k<0,确定图像经过一二四象限,A(4,0),从而可求直线AB的解析式,画出图像,我们发现,△AOC以AO为底,则高要用点C纵坐标的绝对值来表示.

解答:

7ff77d5ad1acc507c3b4eb460ae8804f.png
ab81a9ecd7913d98cf867ee1b6ae4aa4.png

(2)三线两相交

即三条直线两两相交,求出三条直线围成的三角形面积.

其实,这个问题可以转化为给出平面直角坐标系内任意三点的坐标,求出以这三个点为顶点的三角形的面积.由于此时的三角形的底边均为倾斜的,这就需要用到一种全新的方法——铅垂线法,或称宽高法来求三角形的面积.

例2:

已知直线OA经过一三象限,A为第一象限内一定点,动点B不在直线OA上,且BA,BO不与y轴平行,求S△OAB

分析:

显然,这时候的三角形OAB的底并不在x轴,y轴上,即便求出底边长,高依旧是倾斜的,十分难算,因此,我们可以考虑割补法.

如果采用补,补成一个矩形,减去周围三个小三角形的面积那也是可以的,但在今后,尤其是初三求二次函数图像上三点围成三角形面积最值时,点的坐标不能确定,就无法适用,所以今天重点介绍铅垂线法.

什么是铅垂线法呢,就以例2来说,我们可以过点B作一条铅垂线,即作BD⊥x轴,与OA交于点C,则△OAB的面积就可以看作是△OBC与△ABC的面积之和或面积之差,此时,铅垂线BC反而转化为底边,再过点A作AE⊥x轴,则OA水平方向上的距离:即OE的长,可以看作OD与DE的和,或差,此时OD反而看作△OBC的高,DE看作△ABC的高,则△OAB的面积即可看成是

b1a5fa808e45bebe71ac9c47b4b3170f.png

解答:

为了让大家更直观的理解,将6种情况全部展示如下,后三种与前三种类似,故只给图,“无字证明”,可对照消化.

8a9c3e392409b9a52e9c38298db1b008.png
4cf69b9cbeec089f7c60d1bd271c52a3.png
50b0d19d08c888906df75eb2793360ec.png
e9d4c793057a5740a49acf2223a0e63d.png

以上几种情况,属于用多题一解进行验证,均选取OA水平方向的OE长为水平宽,过点B作铅垂线,以B点与OA交点C之间的距离作为铅垂高,从而得出了宽高公式,说的再透些,

2946b08fb929b3697fd7177bd8b03a64.png

那么,这个公式能否通过一题多解来验证呢,答案当然是可以的,就以第一种情况为例.

215b4e43d9057f0eca53aab2b2864e39.png

以上三图,O、A、B三点的位置均不变,我们可以选取任意两点横坐标之差的绝对值作为水平宽,过第三个点作铅垂线,与之前两点所在直线交于一点,第三个点与这个交点纵坐标之差的绝对值作为铅垂高,则问题均可圆满解决.

例2:

已知A(-1,3),B(1,1),C(2,2),求S△ABC

解析:

本题是最基本的练习,现用宽高法的三种不同形式都计算一遍来检验下.

fab424aa31138c3a3d1d0127a73cc5e2.png
fac708bc0d7f1e45b718379f6086d9b1.png
5f4feac4c05f115e078ace3b0cb3ceef.png

分析:

本题解法较多,我们重点来研究铅垂线法.显然,这样的点Q有2个,在射线AB上,或者射线AC上.因为点A的坐标可以确定,那么OA的水平宽可以确定,又因为三角形面积确定,则铅垂高也确定,则问题最后转化为一个方程即可解决.

解答:

1e651e6483051a17b8f8ba5c03200c0b.png
48ba7b09421ab83a90b4d990d624b2e7.png
6248629c05d4f4f937f5791c1458dae0.png

小结:

从2种情况综合来看,我们不难发现,铅垂高的长度,就是两直线解析式的差的绝对值,这个结论在初三还会有更大作用.

当然,本题还可以先求出△OAB的面积,从而求出OBQ1的面积,确定Q1的坐标,同理,求出△AOC的面积,从而求出△OCQ2的面积,确定Q2的坐标.

最后,你发现Q1,Q2关于A对称了吗?Q1A=Q2A,A是它们俩的中点哦.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值