函数的梯度方向和切线方向_导数、方向导数与梯度

本文详细介绍了导数、方向导数、切线、偏导数、全导数、全微分以及梯度的概念。通过一元二次函数和多元函数的例子,解释了导数在不同维度上的表现形式。特别是,文章强调了梯度的矢量特性,指出沿着梯度方向的方向导数最大,并解释了梯度与等高线之间的关系,证明了梯度方向与等高线切线垂直。
摘要由CSDN通过智能技术生成

导数,方向导数,切线、梯度是从高中就开始接触的概念,然而对这几个概念的认识不清,困惑了我很长时间,下面我将以图文并茂的形式,对这几个概念做详细的解释。

1, 导数

定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在x0处有增量Δx,(x0+Δx)也在该邻域内时,相应地函数取得增量Δy=f(x0+Δx)-f(x0);如果当Δx→0时, Δy与Δx之比极限存在,则称函数y=f(x)在点x0处可导,并称这个极限为函数y=f(x)在点x0处的导数,记作:

5ae7ada5188749d4e1c5a6e07864e32e.png

下面以一元二次函数作为例子:

c33de296fa12f7bc8597e7378fe43c8b.png

A是曲线方程 y = f(x)上的点,l是经过A的切线, ∠HAB的正切值代表了切线的斜率, △x -> 0的过程中,点C不断逼向点H,最终两者重合。

17fa39cd0e4e60d71d68d4dad854e35a.png

简单起见,令 θ = ∠HAB,当 △x 取极限时,曲线上某点的导数 = 过该点切线的斜率。需要澄清的一个概念是: 虽然导数有正有负,它仍然是一个标量。

2,方向导数

从一元扩展到多元方程时,情况就变得有点复杂了。首先,多元函数代表的函数图像不再是一条曲线,而是一个曲面(超曲面),通过曲面上的某一点,可以作无数条切线(这里我只讨论可导的情况),这就引出了方向导数的概念,还是先看数学定义:

定义:设函数 z = f(x, y)在点 p(x, y) 的某一邻域 U(p) 内有定义,自点 p 引射线 l, 设 x 轴到射线的转角位 φ, 并设 p'(x + △x, y + △y) 为 l 上的另一点且 p' ∈U(p),我们考虑函数的增量 f(x + △x, y + △y) - f(x, y) 与 p、p'两点距离 ρ = sqrt( (△x)² + (△y)² )的比值, 当 p' 沿 l 趋向 p 时, 如果这个比的极限存在,则成这个极限为函数 f(x, y) 在点 p 沿方向 l 的方向导数,即:

28bc7af1c7cc94e1bb5229718c031864.png

这个定义是我从其他的地方抄的,看不懂 ? 没关系,现在我们分步讲解。

  • 2
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值