切线、法线、梯度之间的关系

本文介绍了切线、法线和梯度的概念及其相互关系。切线是曲线上的局部直线,斜率表示其方向;法向量与梯度在二维平面上方向相同,与切线垂直。通过一元隐函数存在定理,证明了梯度方向与法线方向的关系,从而说明了切线、法线与梯度间的数学联系。
摘要由CSDN通过智能技术生成

     一直以来都有一颗写博客的梦,要么是没有时间,要么是懒。今天强迫自己完成首作。
     为什么会想到写这个标题,因为最近回过头来看KKT条件的时候,发现推导过程中提到等高线切线的方向、梯度方向、法向量方向等。不知道大家有没有和我一样的困惑,当很多概念混在一起的时候,脑子瞬间浆糊,感觉意识都模糊了,下面就静下心来理一理。
备注:下面均是个人拙见,仅供参考。

一、方向

    方向,这里特指两个内容:直线方向、向量方向。
    直线方向,如:切线方向、法线方向。主要指的是斜率,即切线的斜率,法线的斜率。切线斜率大家好理解,经常求解。但是法线的斜率是什么?因为法线很少被提及,大多时候都在说法向量,那么这里法线的方向就就转为法向量的方向。
    二维平面内任一个向量 n → = ( a , b ) \overrightarrow{n}=(a, b) n =(a,b),二维平面向量表达形式都是二维坐标点,它是如何确定一个向量的?实际操作中,默认向量起点为坐标原点 ( 0 , 0 ) (0, 0) (0,0),终点为 ( a , b ) (a, b) (a,b),由这两个点就可以获取到向量的方向: b − 0 a − 0 = b a \frac{b-0}{a-0}=\frac{b}{a} a0b0=ab。故:对于一个向量的方向就是 纵 坐 标 横 坐 标 \frac{纵坐标}{横坐标}

二、切线

    二维平面上比较常见的曲线,如:抛物线、双曲线、直线(可以看成特殊的曲线)等等。

2.1 切线是什么呢?

    切线形象一点说就是你拿一条直线,保持倾斜程度(斜率)不变,水平移动,能刚好碰触到曲线上的某一点 P 0 P_0 P0,则这条直线即为过 P 0 P_0 P0点的切线。下以以抛物线 y = x 2 y = x^2 y=x2为例:
切线

2.2 切线与斜率

    我们经常会提到切线的方向,实际上就是斜率。实际的含义就是切线与 X X X轴正方向形成夹角 α \alpha α的正切值: t a n ( α ) tan(\alpha) tan(α)
切线
上面举例,我们主要是以曲线来说明。现在回过头来想想直线,其实斜率这个词最早出现在平面直线的场景。直线的一般方程为: y = k x + b y = kx + b y=kx+b,斜率为: k k k。直线的斜率说明直线倾斜程度,即直线与 X X X轴正方向形成夹角的正切值。直线斜率的计算一般都是借助直线上任意两点 ( x 0 , y 0 ) , ( x 1 , y 1 ) (x_0,y_0), (x_1, y_1) (x0,y0),(x1,y1),则 k = y 1 − y 0 x 1 − x 0 = d y d x k = \frac{y_1 - y_0}{x_1-x_0}=\frac{dy}{dx} k=x1x0y1y0=dxdy。有个比较自然的提问,直线的切线是什么?回答就是:直线上每一点的切线都是它自己。

三、法向量与梯度、切线

3.1 法向量与梯度

    F ( x , y ) = x 2 + y 2 F(x, y) = x^2+y^2 F(x,y)=x2+y2是二维平面的一个曲面,当限制 F ( x , y ) = c F(x, y)=c F(x,y)=c时,即可确定一条曲线(常称为等高线),当 c = 0 c=0 c=0时,就是我们常见的平面上过原点的圆 x 2 + y 2 = 0 x^2+y^2=0 x2+y2=0

    一方面,在大学的解析几何课程中,我们求解平面 F ( x , y ) F(x, y) F(x,y)法向量为:
( ∂ F ∂ x , ∂ F ∂ y ) = ( 2 x , 2 y ) (\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y})=(2x, 2y) (xF,yF)=(2x,2y)
    另一方面,令 z = F ( x , y ) = x 2 + y 2 z=F(x, y)=x^2+y^2 z=F(x,y)=x2+y2,我们分别做 z z z x , y x, y x,y的偏导后,获得描述 z z z值的梯度
( ∂ z ∂ x , ∂ z ∂ x ) = ( F x , F y ) = ( 2 x , 2 y ) (\frac{\partial z}{\partial x}, \frac{\partial z}{\partial x})=(F_x, F_y)=(2x, 2y) (xz,xz)=(Fx,Fy)=(2x,2y)
已知梯度是一个向量:它的模长用于描述变化率(决定于x方向上变换一个单位和y方向上变换一个单位时, z z z值范围变化多少);它的方向表示变化方向。
综上,不难发现,法向

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值