python constraint 方程组_如何用sympy来解有约束条件的方程组

我想到的是:

我使用linsolve来解线性方程组而不限制域。然后,解集可能是空的,完全确定的,或者依赖于一些自由变量。然后,我尝试对{0,1}中的自由变量进行每种替换,并只收集那些导致解决方案的变量,使每个变量都在{0,1}中。在from sympy import *

def eval_solution(concrete_solution):

concrete_solution_eval = list(map(lambda x: x == 1 or x == 0,concrete_solution))

if sum(concrete_solution_eval) == len(concrete_solution):

return True

return False

def enumerate_solutions(Sols):

if Sols.free_symbols == set(): # no free variables. see if all variables belong to {0,1}

concrete_solution = Sols.args[0]

if concrete_solution == set(): # no solutions

return []

if eval_solution(concrete_solution):

return [concrete_solution]

else:

return []

# create a list of tuples of free variables, one for each valid value

free_vars = []

for i in range(2**len(Sols.free_symbols)):

free_vars.append(tuple(Sols.free_symbols))

# generate values to substitute for free variables

free_vals = [list(bin(i))[2:] for i in range(2**len(Sols.free_symbols))]

free_vals = [tuple(map(int, list('0'*(len(Sols.free_symbols)-len(s)))+s )) for s in free_vals]

# zip twice to generate lists of pairs of variable and value

free_zip = zip(free_vars,free_vals)

free_zip_fin = list([list( zip( x[0], x[1] )) for x in free_zip ] )

correct_solutions = []

for substitution in free_zip_fin:

concrete_solution = list(map(lambda x: x.subs(substitution),Sols.args[0]))

if eval_solution(concrete_solution):

correct_solutions.append(concrete_solution)

return correct_solutions

x1,x2,x3,x4,x5,x6 = symbols('x1,x2,x3,x4,x5,x6')

res=linsolve([x1+x2+x3+x4-1, x3+x4-1, x4+x5-1, x4+x5+x6-2],[x1,x2,x3,x4,x5,x6])

l = enumerate_solutions(res)

print (l)

这可能比你的想法快,也可能不会快。你自己看看这对你有没有用

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
求解有约束条件的最低运输成本问题可以使用线性规划进行建模和求解。下面是一个使用Python库`scipy`中的`linprog`函数求解最低运输成本问题的代码示例: ```python import numpy as np from scipy.optimize import linprog # 运输成本矩阵 cost_matrix = np.array([[400, 250, 200], [300, 450, 350], [200, 400, 250]]) # 供应限制约束 supply_constraint = [100, 150, 200] # 需求限制约束 demand_constraint = [120, 80, 150] # 构建线性规划模型 c = cost_matrix.flatten() # 目标函数系数(将矩阵展平成一维数组) A_eq = [] # 相等约束矩阵 b_eq = [] # 相等约束值 A_ub = [] # 不等约束矩阵 b_ub = [] # 不等约束值 # 构建供应约束 for supply in supply_constraint: constraint = np.zeros_like(cost_matrix.flatten()) constraint[:cost_matrix.size] = 1 A_eq.append(constraint) b_eq.append(supply) # 构建需求约束 for demand in demand_constraint: constraint = np.zeros_like(cost_matrix.flatten()) constraint[::cost_matrix.shape[1]] = 1 A_eq.append(constraint) b_eq.append(demand) # 求解线性规划问题 result = linprog(c, A_eq=A_eq, b_eq=b_eq, bounds=(0, None)) # 输出最优解 print("最低运输成本为:", result.fun) print("运输方案为:") print(result.x.reshape(cost_matrix.shape)) ``` 在这段代码中,我们首先定义了运输成本矩阵`cost_matrix`,供应限制约束`supply_constraint`和需求限制约束`demand_constraint`。然后,我们根据约束条件和目标函数构建了线性规划模型。通过调用`linprog`函数并传入目标函数系数、相等约束矩阵和值、不等约束矩阵和值等参数,来求解线性规划问题。最后,我们输出了最低运输成本和对应的运输方案。 请注意,这只是一个简单的示例,实际应用中可能会有更多的约束条件和变量。你可以根据具体问题进行相应的调整和扩展。另外,还可以使用其他库或工具如`cvxpy`、`PuLP`等来求解线性规划问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值