pandas nat_pandas 数据类型转换

在使用Pandas处理数据时,数据类型问题至关重要。本文介绍了如何检查和转换数据类型,如astype()方法将列转为int类型,并探讨了在数据不纯净时自定义函数和Pandas内置函数的清理策略。
摘要由CSDN通过智能技术生成

数据处理过程的数据类型

  • 当利用pandas进行数据处理的时候,经常会遇到数据类型的问题,当拿到数据的时候,首先需要确定拿到的是正确类型的数据,一般通过数据类型的转化,这篇文章就介绍pandas里面的数据类型(data types也就是常用的dtyps),以及pandas与numpy之间的数据对应关系。

3746d673716d64ccb893d31a42761a53.png
  • 主要介绍object,int64,float64,datetime64,bool等几种类型,category与timedelta两种类型会单独的在其他文章中进行介绍。当然本文中也会涉及简单的介绍。

数据类型的问题一般都是出了问题之后才会发现的,所以有了一些经验之后就会拿到数据之后,就直接看数据类型,是否与自己想要处理的数据格式一致,这样可以从一开始避免一些尴尬的问题出现。那么我们以一个简单的例子,利用jupyter notebook进行一个数据类型的介绍。

####按照惯例导入两个常用的数据处理的包,numpy与pandas
import numpy as np
import pandas as pd
# 从csv文件读取数据,数据表格中只有5行,里面包含了float,string,int三种数据python类型,也就是分别对应的pandas的float64,object,int64
# csv文件中共有六列,第一列是表头,其余是数据。
df = pd.read_csv("sales_data_types.csv")
print(df)
Customer Number     Customer Name          2016            2017  
0            10002  Quest Industries  $125,000.00     $162,500.00    
1           552278    Smith Plumbing  $920,000.00   $1,012,000.00    
2            23477   ACME Industrial   $50,000.00      $62,500.00    
3            24900        Brekke LTD  $350,000.00     $490,000.00    
4           651029         Harbor Co   $15,000.00      $12,750.00    

  Percent Growth Jan Units  Month  Day  Year Active  
0         30.00%       500      1   10  2015      Y  
1         10.00%       700      6   15  2014      Y  
2         25.00%       125      3   29  2016      Y  
3          4.00%        75     10   27  2015      Y  
4        -15.00%    Closed      2    2  2014      N
df.dtypes
Customer Number     int64
Customer Name      object
2016               object
2017               object
Percent Growth     object
Jan Units          object
Month               int64
Day                 int64
Year                int64
Active             object
dtype: object
# 假如想得到2016年与2017年的数据总和,可以尝试,但并不是我们需要的答案,因为这两列中的数据类型是object,执行该操作之后,得到是一个更加长的字符串,
# 当然我们可以通过df.info() 来获得关于数据框的更多的详细信息,
df['2016']+df['2017']
0      $125,000.00 $162,500.00 
1    $920,000.00 $1,012,000.00 
2        $50,000.00 $62,500.00 
3      $350,000.00 $490,000.00 
4        $15,000.00 $12,750.00 
dtype: object
df.info()
# Customer Number 列是float64,然而应该是int64
# 2016 2017两列的数据是object,并不是float64或者int64格式
# Percent以及Jan Units 也是objects而不是数字格式
# Month,Day以及Year应该转化为datetime64[ns]格式
# Active 列应该是布尔值
# 如果不做数据清洗,很难进行下一步的数据分析,为了进行数据格式的转化,pandas里面有三种比较常用的方法
# 1. astype()强制转化数据类型
# 2. 通过创建自定义的函数进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值