测度定义_11.2 乘积测度

Proposition 11.3

,且
-有限的测度,则 (1)
可测,且
可测的。

(2) 我们有:
(式 11.1)
注:因为
, (式 11.1) 能够被写作:

我们通常也写成:
证:首先设
是有限的测度。令
是由所有
中满足 (1) 和 (2) 的集合构成的集合系, 则
。我们要证明
是包含
的单调系 (
的定义见11.1节)。然后由单调系定理 (Theorem 2.10), 令
是由代数
生成的单调系,则
。于是我们就能有

是一可测矩形, 其中
, 那么
, 故
可测的,且
; 同理,
可测的,且
; 所以 (1) 跟 (2) 对于可测矩形成立。 (注:因为
有限,所以
都是可积的)

, 其中
是互不相交的可测矩形,那么
。注意到
, 我们有
,所以
也是互不相交的。令

于是我们有:
, 所以
可测的 - 因为它是
可测的函数的和 (Proposition 5.7)。类似的,
可测的, 这就证明了 (1)。因为
是可测矩形,根据上一段的证明可知
。因为
有限,所以
都是可积的, 运用 Lebesgue 积分的线性性 (Theorem 7.4),我们就证明了 (2)。

到这边,我们也证明了
, 这是因为上面一段证明显示了所有的
, 都是
中的元素,其中
是互不相交的可测矩形。而这些
构成了
(回顾 1.11 节中
的定义)。

。令
。那么
。由
的定义可知
可测的,
可测的,于是
可测的,
可测的 (Proposition 5.8)。于是根据 Lebesgue 单调收敛定理 (Theorem 7.1), (式 11.1) 对
也成立。若
, 基本按照前面的逻辑可以同理得到结论。唯一不同之处,是我们不能用 Lebesgue 单调收敛定理了,而是需要 Lebesgue 控制收敛定理 (Theorem 7.9):这时候我们就要用到
是有限测度的条件,
, 且
,
是可积的,同理
也是可积的。

于是,我们就证明了
是一个单调系,且
。根据单调系定理 (Theorem 2.10),

最后,若
-有限的, 那么根据 3.1 节 Definition 3.7 中的讨论,我们可以找到
, 满足
。任取
,令
; 任取
,令
- 那么
都是有限测度。令
,由上面关于有限测度情况的证明,我们知道 (1), (2) 对于
。又根据测度的连续性 (Proposition 3.5 (3)), 我们得:
。由 Proposition 5.8 可知
可测的,
可测的。再由 Lebesgue 控制收敛定理 (Theorem 7.9),我们可证 (式 11.1) 成立。

证毕。

有了上面这个定理,我们对于

-有限的测度
就可以定义出唯一的乘积测度。

Definition 11.4

,且
-有限的。定义乘积测度:
(式 11.2)

Proposition 11.5 Definition 11.3 中所定义的

符合 Definition 3.1 的测度定义,即
确实是一个测度。
证:显然,
。若
是两两不相交的,且
,那么由 Proposition 11.2 的证明过程可知
, 于是我们有:
, 故
是有限可加的。若
, 且
, 令
, 那么
。由 Lebesgue 单调收敛定理 (Theorem 7.1) 可得
, 故
是一个测度。

注:若

是可测矩形,那么
, 所以
- 这个就是我们常识中的矩形面积公式:矩形面积等于长乘宽。所以,
这个定义跟直觉符合得很好

上一节:11.1 乘积 sigma-代数
下一节:11.3 Fubini-Tonelli 定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值