我一直在使用scipy.optimize.minimize
(docs)
当我定义一个无法满足约束的问题时,我注意到了一些奇怪的行为.这是一个例子:
from scipy import optimize
# minimize f(x) = x^2 - 4x
def f(x):
return x**2 - 4*x
def x_constraint(x, sign, value):
return sign*(x - value)
# subject to x >= 5 and x<=0 (not possible)
constraints = []
constraints.append({'type': 'ineq', 'fun': x_constraint, 'args': [1, 5]})
constraints.append({'type': 'ineq', 'fun': x_constraint, 'args': [-1, 0]})
optimize.minimize(f, x0=3, constraints=constraints)
结果输出:
fun: -3.0
jac: array([ 2.])
message: 'Optimization terminated successfully.'
nfev: 3
nit: 5
njev: 1
status: 0
success: True
x: array([ 3.])
这个问题没有满足约束的解决方案,但是,使用初始条件作为最优解,minimize()成功返回.
这种行为是有意的吗?如果是这样,如果最优解不满足约束,是否有办法强制失败?