python:scipy.optimize.minimize(method=’Nelder-Mead’)

本文介绍了使用Python中的scipy.optimize.minimize函数,特别是method='Nelder-Mead',来解决局部优化问题。讨论了Nelder-Mead算法对初始值的敏感性,通过Himmelblau函数的实例展示了优化流程,并提到了在不同参数取值范围不同时进行归一化的必要性。
摘要由CSDN通过智能技术生成

简介

优化问题是工程实践中经常遇到的一种问题。简单讲,就是搜索优化出一组自变量参数,使得目标函数达到极小值(极大值)。

如何搜索出这组参数呢:这就是优化算法做的事情。不同的优化算法适用于不同的优化问题。

本文简要介绍在python种NM算法来解决局部优化问题。

接口

在这里插入图片描述

使用总结:

  • NM是局域优化,即最终的优化结果会掉到一个局域最小值附近,故对初值敏感
  • 有两种方式设置初值,1.设置x0;2.设置options中的initial_simplex。手动设置initial_simplex更好,可灵活控制收敛速度。
  • 终止条件有:maxiter, maxfev, xatol, fatol。判断条件是:先判断是否达到maxiter, maxfev,若达到则终止;若未达到,则再判断 xatol, fatol是否同时满足条件,若满足,则终止。其源代码逻辑如下:
  while (fcalls[0] < maxfun and iterations < maxiter):
       if (numpy.max(numpy.ravel(numpy.abs(sim[1:] - sim[0]))) <= xatol and
               numpy.max(numpy.abs(fsim[0] - fsim[1:])) <= fatol):
           break
  • maxiter, maxfev默认值为N*200。比如自变量个数为2,则默认值为400;xatol, fatol默认值为1e-4,一般根据实际问题手动设置。越小,则收敛越快。
  • 若不同参数的取值范围不同,则应对其进行归一化处理

实例1:Himmelblau函数

关于Himmelblau函数

f ( x , y ) = ( x 2 + y − 11 ) 2 + ( x + y 2 − 7 ) 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值