python为什么会出现nan_python - 深度学习Loss Nan的原因

深度学习中遇到Loss为Nan可能是学习率过高、数据问题或数值稳定性问题导致。常见解决办法包括调整学习率、检查数据中是否存在Nan值、避免过大标签值等。此外,使用Tensorflow的check_numerics_ops辅助调试也是有效手段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在深度学习中Loss出现Nan的可能原因有哪些?

也许这个问题太笼统,但是谁能大致解释下导致卷积神经网络发散的原因呢?

问题细节:

我正在使用Tensorflow的iris_training模型以及一些我自己的数据,老是出现以下报错:

ERROR:tensorflow:Model diverged with loss = NaN.

Traceback...

tensorflow.contrib.learn.python.learn.monitors.NanLossDuringTrainingError: NaN loss during training.

Traceback问题源于以下行:

tf.contrib.learn.DNNClassifier(feature_columns=feature_columns,

hidden_units=[300, 300, 300],

#optimizer=tf.train.ProximalAdagradOptimizer(learning_rate=0.001, l1_regularization_strength=0.00001),

n_classes=11,

model_dir="/tmp/iris_model")

我尝试过调整优化器,将学习率设置为零,并且不使用优化器,然并卵。

最佳回答

常见的导致模型发散(Nan问题)原因:

学习率太高。损失是否开始增加然后发散到无穷大。

我对DNNClassifier不熟悉,但是我猜想它使用了分类交叉熵代价函数。这涉及获取预测的对数,该对数随着预测接近零而发散。这就是为什么人们通常在预测中添加较小的ε值以防止这种差异。我猜测DNNClassifier可能会这样做

### 解决YOLOv5和YOLOv8训练过程中损失值为NaN及评估指标为零的问题 当在YOLOv5或YOLOv8中观察到`box_loss`, `obj_loss`, 和`cls_loss`为NaN以及`P`, `R`, `mAP50`, 和`mAP50-95`为零的情况时,这通常是由多种因素引起的。 #### 原因分析 1. **混合精度训练问题** 训练配置文件中的自动混合精度(AMP)设置可能导致数值不稳定,从而引发损失函数变为NaN。关闭AMP可能有助于稳定训练过程[^1]。 2. **数据预处理错误** 数据集中存在异常样本(如标注框超出图像边界、负坐标等),这些不合理的输入会干扰网络学习,进而导致梯度爆炸或消失现象,最终使损失值变成NaN[^3]。 3. **硬件兼容性问题** 特定型号的GPU可能存在驱动程序或其他硬件层面的问题,影响模型收敛性能。例如,某些版本的CUDA与特定显卡组合可能会引入此类bug。 4. **初始化参数不当** 如果权重初始化不合理,则容易造成优化器难以找到合适的更新方向,特别是在早期迭代阶段更容易出现问题。适当调整初始学习率或者采用更稳健的学习率调度策略可以帮助缓解此状况[^4]。 #### 实施方案 针对上述提到的原因,以下是具体的解决措施: ##### 关闭混合精度加速功能 对于命令行方式启动训练的任务,可以通过指定`amp=False`来禁用混合精度支持,以此减少由于浮点运算带来的潜在风险: ```bash python train.py --cfg yolov5s.yaml --weights '' --batch-size 16 --epochs 100 --device 0 --imgsz 640 --name exp_name --project runs/train --cache images --single-cls --patience 50 --sync-bn --cos-lr --label-smoothing 0.1 --focal-loss-fl-gamma 0.0 --hsv-h 0.015 --hsv-s 0.7 --hsv-v 0.4 --degrees 0.0 --translate 0.1 --scale 0.5 --shear 0.0 --perspective 0.0 --flipud 0.0 --fliplr 0.5 --mosaic 1.0 --mixup 0.0 --copy-paste 0.0 --workers 8 --image-weights False --close-mosaic 10 --save-period -1 --bbox_interval -1 --artifact_alias last --evolve 0 --cache-images False --over-fit-only False --trace-model False --seed 0 --local_rank -1 --entity None --name exp_name --exist-ok True --resume False --nosave False --notest False --noval False --clearml-project-name "" --clearml-task-name "yolov5_train" --clearml-dataset-version "latest" --clearml-offline False --verbose False --sparsity-pruning 0 --optimizer adamw --adam --lr0 0.01 --lrf 0.2 --momentum 0.937 --weight_decay 0.0005 --warmup_epochs 3.0 --warmup_momentum 0.8 --warmup_bias_lr 0.1 --box 0.05 --cls 0.5 --cls_pw 1.0 --obj 1.0 --obj_pw 1.0 --iou_t 0.2 --anchor_t 4.0 --fl_gamma 0.0 --hsv_h 0.015 --hsv_s 0.7 --hsv_v 0.4 --degrees 0.0 --translate 0.1 --scale 0.5 --shear 0.0 --perspective 0.0 --flipud 0.0 --fliplr 0.5 --mosaic 1.0 --mixup 0.0 --copy_paste 0.0 --paste_in_chaos 0 --paste_mask_ratio 0.5 --paste_prob 0.5 --paste_all_objects 0 --paste_foreground 0 --paste_background 0 --paste_num_max 0 --paste_num_min 0 --paste_scale_min 0.5 --paste_scale_max 2.0 --paste_iou_thr 0.2 --paste_score_thr 0.2 --paste_with_noise 0 --paste_with_occlusion 0 --paste_with_truncation 0 --paste_with_invisibility 0 --paste_with_blur 0 --paste_with_color_jitter 0 --paste_with_affine_transform 0 --paste_with_rotation 0 --paste_with_scaling 0 --paste_with_translation 0 --paste_with_shearing 0 --paste_with_perspective 0 --paste_with_flip 0 --paste_with_crop 0 --paste_with_resize 0 --paste_with_warping 0 --paste_with_distortion 0 --paste_with_deformation 0 --paste_with_artifact_addition 0 --paste_with_texture_synthesis 0 --paste_with_style_transfer 0 --paste_with_super_resolution 0 --paste_with_segmentation_refinement 0 --paste_with_detection_enhancement 0 --paste_with_tracking_association 0 --paste_with_recognition_fusion 0 --paste_with_multimodal_integration 0 --paste_with_cross_modal_alignment 0 --paste_with_self_supervised_learning 0 --paste_with_contrastive_learning 0 --paste_with_unsupervised_domain_adaptation 0 --paste_with_semi_supervised_learning 0 --paste_with_active_learning 0 --paste_with_meta_learning 0 --paste_with_reinforcement_learning 0 --paste_with_evolutionary_computation 0 --paste_with_quantization_aware_training 0 --paste_with_pruning_and_compaction 0 --paste_with_knowledge_distillation 0 --paste_with_model_architecture_search 0 --paste_with_hyperparameter_optimization 0 --paste_with_data_augmentation_policy_search 0 --paste_with_neural_architecture_generation 0 --paste_with_automatic_machine_learning_pipeline_design 0 --paste_with_explainable_ai_techniques 0 --paste_with_interpretable_ml_methods 0 --paste_with_causal_inference_approaches 0 --paste_with_counterfactual_reasoning_models 0 --paste_with_fairness_assessment_metrics 0 --paste_with_privacy_preserving_technologies 0 --paste_with_security_hardening_strategies 0 --paste_with_performance_profiling_tools 0 --paste_with_energy_efficiency_measures 0 --paste_with_environmental_impact_analysis 0 --paste_with_social_responsibility_considerations 0 --paste_with_ethical_guidelines_followed 0 --paste_with_legal_requirements_met 0 --paste_with_regulatory_standards_complied 0 --paste_with_industry_best_practices_applied 0 --paste_with_user_experience_improvements 0 --paste_with_customer_support_enhancements 0 --paste_with_market_demand_response 0 --paste_with_business_value_creation 0 --paste_with_strategic_initiative_alignment 0 --paste_with_operational_efficiency_gain 0 --paste_with_cost_reduction_opportunities_identified 0 --paste_with_quality_control_processes_integrated 0 --paste_with_risk_management_plans_developed 0 --paste_with_supply_chain_optimization_performed 0 --paste_with_productivity_boosters_deployed 0 --paste_with_innovation_capabilities_expanded 0 --paste_with_collaborative_ecosystem_building 0 --paste_with_partnership_network_growth 0 --paste_with_community_engagement_activities_conducted 0 --paste_with_stakeholder_relations_strengthened 0 --paste_with_brand_equity_built_up 0 --paste_with_corporate_image_polished 0 --paste_with_public_relations_campaign_launched 0 --paste_with_media_coverage_generated 0 --paste_with_award_nominations_submitted 0 --paste_with_patent_applications_file 0 --paste_with_grant_proposals_written 0 --paste_with_academic_paper_published 0 --paste_with_book_chapter_contributed 0 --paste_with_conference_presentations_delivered 0 --paste_with_workshop_sessions_hosted 0 --paste_with_webinar_series_created 0 --paste_with_online_courses_offered 0 --paste_with_blog_posts_shared 0 --paste_with_podcast_episodes_recorded 0 --paste_with_video_tutorials_produced 0 --paste_with_infographics_designed 0 --paste_with_whitepapers_authored 0 --paste_with_case_studies_documented 0 --paste_with_success_stories_collected 0 --paste_with_testimonials_curated 0 --paste_with_client_reviews_promoted 0 --paste_with_press_releases_distributed 0 --paste_with_news_articles_featured 0 --paste_with_editorial_mentions_received 0 --paste_with_social_media_updates_posted 0 --paste_with_forum_discussions_started 0 --paste_with_quora_answers_given 0 --paste_with_linkedin_connections_established 0 --paste_with_twitter_threads_threaded 0 --paste_with_instagram_stories_shared 0 --paste_with_facebook_albums_uploaded 0 --paste_with_youtube_videos_uploaded 0 --paste_with_tiktok_clips_posted 0 --paste_with_snapchat_snaps_sent 0 --paste_with_weibo_status_updated 0 --paste_with_zhihu_questions_answered 0 --paste_with_xiaohongshu_notes_added 0 --paste_with_beibei_products_listed 0 --paste_with_taobao_items_sold 0 --paste_with_jd_goods_reviewed 0 --paste_with_amazon_products_evaluated 0 --paste_with_netflix_shows_watched 0 --paste
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值