java统计文本中英文单词个数split_Java实现单词统计

本文介绍如何使用Java实现MapReduce统计文本中单词出现的次数。首先,数据被上传到HDFS,然后在Map阶段进行String.split()处理,接着由HashPartitioner分配到不同的Reduce任务中进行统计。最后,通过执行Hadoop命令和查看结果,展示了一个完整的单词统计过程。
摘要由CSDN通过智能技术生成

原文链接:

单词统计的是统计一个文件中单词出现的次数,比如下面的数据源

其中,最终出现的次数结果应该是下面的显示

那么在MapReduce中该如何编写代码并出现最终结果?

首先我们把文件上传到HDFS中(hdfs dfs –put …)

数据名称:data.txt,大小是size是2G

红黄绿三个块表示的是数据存放的块

然后数据data.txt进入map阶段,会以(KV对)的形式进入,K表示的是:每行首字母相对于文件头的字节偏移量,V表示的是每一行的文本。

那么我可以用图表示:蓝色的椭圆球表示一个map,红黄绿数据块在进入map阶段的时候,数据的形式为左边红色的(KV对)的形式

经过map处理,比如String.split(""),做一次处理,数据会在不同的红黄绿数据块中变为下面的KV形式

我们在配置Hadoop的时候或设置reduce的数量,假如有两个reduce

Map执行完的数据会放到对应的reduce中,如下图

这个地方有一个简单的原理就是

Job.setNumReduce(2)会设置reduce的数量

而HashPartioner类可以利用 key.hashcode % reduce的结果,将不同的map结果输入到不同的reduce中,比如a-e开头的放到一个地方,e-z开头的放到一个地方,那么

这样的数据结果就会变成

好那么我们此时可以统计了,我开始编写代码

首先我们创建一个wordCount项目,我们创建的项目是maven项目

其中pom的配置部分

我们创建类

继承Mapper(注意注释)

编写代码

同样创建WordCountReducer,编写代码,利用前面的reduce思想理解

创建WordCountDriver类编写代码

导出项目jar

我们启动Hadoop

我们上传数据和jar包

将数据上传到hdfs上

执行下面语句

bin/yarn jar /data/wordCount/wordCount.jar com.xlglvc.xx.mapredece.wordcount_client.WordCountDriver /data.txt /outputwordcount

出了点问题,时间不同步

安装ntpdate工具

yum -y install ntp ntpdate

设置系统时间与网络时间同步

ntpdate cn.pool.ntp.org

然后重新执行,此时我们新选择个目录

bin/yarn jar /data/wordCount/wordCount.jar com.xlglvc.xx.mapredece.wordcount_client.WordCountDriver /data.txt /outputwordcount1

我们去浏览器查询

我们查看最终结果

bin/hdfs dfs -text /outputwordcount1/part-r-00000

出现我们想要的结果,统计完成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值