原文链接:
单词统计的是统计一个文件中单词出现的次数,比如下面的数据源
其中,最终出现的次数结果应该是下面的显示
那么在MapReduce中该如何编写代码并出现最终结果?
首先我们把文件上传到HDFS中(hdfs dfs –put …)
数据名称:data.txt,大小是size是2G
红黄绿三个块表示的是数据存放的块
然后数据data.txt进入map阶段,会以(KV对)的形式进入,K表示的是:每行首字母相对于文件头的字节偏移量,V表示的是每一行的文本。
那么我可以用图表示:蓝色的椭圆球表示一个map,红黄绿数据块在进入map阶段的时候,数据的形式为左边红色的(KV对)的形式
经过map处理,比如String.split(""),做一次处理,数据会在不同的红黄绿数据块中变为下面的KV形式
我们在配置Hadoop的时候或设置reduce的数量,假如有两个reduce
Map执行完的数据会放到对应的reduce中,如下图
这个地方有一个简单的原理就是
Job.setNumReduce(2)会设置reduce的数量
而HashPartioner类可以利用 key.hashcode % reduce的结果,将不同的map结果输入到不同的reduce中,比如a-e开头的放到一个地方,e-z开头的放到一个地方,那么
这样的数据结果就会变成
好那么我们此时可以统计了,我开始编写代码
首先我们创建一个wordCount项目,我们创建的项目是maven项目
其中pom的配置部分
我们创建类
继承Mapper(注意注释)
编写代码
同样创建WordCountReducer,编写代码,利用前面的reduce思想理解
创建WordCountDriver类编写代码
导出项目jar
我们启动Hadoop
我们上传数据和jar包
将数据上传到hdfs上
执行下面语句
bin/yarn jar /data/wordCount/wordCount.jar com.xlglvc.xx.mapredece.wordcount_client.WordCountDriver /data.txt /outputwordcount
出了点问题,时间不同步
安装ntpdate工具
yum -y install ntp ntpdate
设置系统时间与网络时间同步
ntpdate cn.pool.ntp.org
然后重新执行,此时我们新选择个目录
bin/yarn jar /data/wordCount/wordCount.jar com.xlglvc.xx.mapredece.wordcount_client.WordCountDriver /data.txt /outputwordcount1
我们去浏览器查询
我们查看最终结果
bin/hdfs dfs -text /outputwordcount1/part-r-00000
出现我们想要的结果,统计完成