fmask云检测 matlab_ENVI5.3.1云检测工具

前言

ENVI5.3.1新增云自动检测工具,支持Landsat4-5 TM,Landsat7 ETM+,Landsat8 OLI/TIRS和NPP VIIRS 传感器数据,可生成云掩膜文件,使用Fmask3.2算法。需要输入多光谱波段的大气表观反射率图像,亮温和卷云波段大气表观反射率图像为可选择的输入。

软件:ENVI5.3.1,下载地址:https://www.ixxin.cn/2016/12/14/envi-5-3-sp1pojie/

影像:landsat8 OLI,下载地址:https://www.ixxin.cn/2016/11/27/landsat8freedata/

步骤

定标多波段为表观反射率

热红外波段定标为亮度温度

卷云波段定标为表观反射率

使用Calculate Cloud Mask Using Fmask Algorithm工具。

一次输入数据,参数默认即可。

云检测结果:

图像去云

使用Segmentation Image分离云

<

### 使用ENVI 5.3.1处理和分析Landsat 8影像 #### 数据获取与准备 为了在ENVI 5.3.1中处理Landsat 8影像,首先需下载所需的数据集。这些数据可以从美国地质调查局(USGS)地球资源观测系统数据中心获得[^2]。 #### 辐射定标与大气校正 一旦获得了原始的Landsat 8影像,在进行进一步的分析之前,通常需要对其进行辐射定标和大气校正来提高数据分析的质量。这一步骤可以减少由太阳角度变化等因素引起的误差,使得不同时间拍摄的照片之间具有更好的对比度一致性。通过ENVI中的相应模块完成这一过程。 #### 主成分分析(PCA) 主成分分析是一种常用的空间降维技术,能够帮助提取遥感图像的主要特征并降低噪声影响。对于Landsat 8影像而言,可以在ENVI环境下利用内置工具执行PCA变换,从而突出显示地物差异或异常情况。具体操作可以通过菜单栏选择相应的功能选项来进行设置[^1]。 ```matlab % MATLAB PCA 实现示例 (仅作参考) data = imread(&#39;path_to_landsat_image&#39;); % 加载landsat图片 [coeff,score,latent] = pca(double(data(:,:,:,1))); % 对第一个波段做pca imagesc(score(:,1)); colorbar; title(&#39;First Principal Component&#39;); ``` #### 自动云检测 ENVI 5.3.1提供了专门针对多种卫星传感器设计的新一代自动化识别算法——Fmask 3.2版本。该方法适用于包括但不限于Landsat系列在内的多个平台所采集的数据,并能有效地区分出层及其阴影部分,进而生成对应的二值化掩码图用于后续去除干扰项的操作之中[^3]。 #### 监督分类 当涉及到特定目标类型的精确辨识时,则可能需要用到监督学习的方法论之一即最大似然法等来进行训练样本的选择以及最终模型构建工作。在此过程中,用户往往借助于预先定义好的感兴趣区域(.roi文件),并通过图形界面友好型向导逐步引导至理想的结果产出阶段[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值