tutte定理证明hall定理_一道习题:证明素数定理

参考文献:1、 陈天权《数学分析讲义》(一、三册)
2、Greene 《Function Theory of one Complex》
3,Ahlfors 《Complex Analysis》
本文稍长

本文先介绍Bernoulli 数&Riemann

函数以及性质,
最终目的:证明《数学分析讲义》第三册第十二章的课后习题:

72dee6fdd730ad4c3a8f6fa3425ca533.png

Bernoulli 数

5.8.2 设

,Bernoulli 数
由下式定义

i)证明:

ii)证明:

iii)证明:所有的Bernoulli 数是有理数,且

iv)证明:

是有理数,

v)证明:

vi)证明:

vii)证明:

viii)证明:

ix)证明:

Proof

i)

,故

ii)由定义得:

iii)由于

,则根据有理数的代数性质可知
是有理数

iv)

由于

是奇函数,
为偶函数,可知
是偶函数

,令
,得

v)

由于

并且

可证

vi)

vii)

viii)

ix)

该部分主要介绍了Bernoulli 数及其性质

5.8.3

充分小时可展成
的幂级数:

证明:

i)

是多项式:
,称为Bernoulli 多项式

ii)

iii)

iv)

v)

vi)

Proof

i)

ii)

iii)

iv)

v)

vi)显然

该部分主要介绍了Bernoulli 多项式与其生成函数、Bernoulli 数的关系

6.9.11 证明

i)设

,有

ii)设

,有
Euler-Maclaurin 公式

其中

iii)当

时,

收敛

Proof

i)可以得:

ii)

其中

iii)

则根据反常函数的Cauchy 收敛准则,

收敛

Riemann

函数

12.8.2 对于

,Riemann 函数定义为

i)上式在

的任何子集上是一致收敛的,
上全纯

ii)记

为全体素数按自然顺序排成的序列,证明

收敛

iii)证明:

iv)证明:

,有

其中

的整函数

v)证明:

其中

vi)记

,证明:
上解析

vii)定义函数:

证明:

的解析延拓

viii)证明:

是整函数

Proof

i)由于

,故
的任意子集上一致收敛

ii)

其中

是对
求和,其中
,故

其绝对收敛

iii)由

其中

取遍奇整数

其中

取遍不被
整除的整数

取遍不被
整除的整数,由于
中第一项是
,第二项是
,故
时,除第一向外的所有项为

iv)利用E-M公式,显然

v)令

,可得

vi)等价于证

上复可微,等价于证

存在

等价于证

显然

vii)在

无关

viii)要证

是整函数

由于

,只需证
是整函数,即

由vii)知

可延拓至
,记为
,则

故延拓后的

是整函数

12.8.3

i)证明:对于

ii)证明:

Proof

i)

ii)

12.8.4-12.8.5 在

上定义函数

其中

,对任何
,Hankel 函数定义为

对于

是如下定义的Hankel 回路

244d9438b9ebd06ee52b02113d22be52.png

其中

i)证明:

ii)证明:

是整函数

Proof

先考虑

在有限道路上的情况:

时,


ii)先证:

时,

,令

现证:证明

可解析延拓在

可知
的可去奇点

又由于

上的整函数,故
可解析延拓在

综上,

是整函数

12.8.6 设


i)证明:
处的留数为

ii)证明:

iii)当

,证明

iv)当

,证明:

v)证明:

,Riemann 函数方程

成立
vi)证明:

外的零点只有负偶数:

Proof

i)

ii)

iii)

其中

那么

,存在不依赖于
的常数s.t.

那么

vi)

v)

iv)由

与素数的关系知,
内无零点,其次由
可知,
为其零点

12.8.7 定义函数

i)证明:

ii)证明:

iii)设

是一个在
的一个邻域中不恒等于零的全纯函数,且
。证明:对一切充分接近
而大于
,有


iv)
,令
,证明:若
,则

v)证明:对任何实数

,有

vi)证明:在临界长条的边界

无零点

Proof

i)

ii)


iii)设

iv)由于

,故
阶零点,
阶零点,
阶零点,故是
的零点

v)


vi)显然,先可看出在
上无零点,再推出在
上无零点

素数定理

12.8.9

i)证明:

ii)证明:

iii)设

,证明:
收敛于一个有限的正数

iv)设
,证明:

v)证明:

vi)证明:

是无限集合

Proof

i)


ii)显然

iii)

iv)

v)

与iv),iii)矛盾,故假设不成立,即


vi)

中元素无限

12.8.10 设

i)证明:

ii)

,证明:

iii)

,证明:


iv)当
时,

Proof

i)

ii)

iii)

iv)

12.8.11

i)设

,s.t.
,且

证明:

ii)设

,s.t.
,且

证明:

iii)若

存在且有限,则

Proof

i)

ii)同理

iii)

12.8.12

i)证明:若

,则
是自然数

的因子

ii)证明:

iii)证明:

iv)证明:

v)证明:

Proof

i)显然

ii)

依然是
的因子,故

iii)

iv)

v)

12.8.13 定义函数

i)证明:该级数在

的任何紧子集上一致收敛

ii)证明:

iii)证明:在

的任何紧子集上

一致收敛,故

可以延拓成
上的亚纯函数。延拓后的
上可能的极点是
上的零点以及

iv)证明:

的邻域中全纯

v)证明:在

上,有

Proof

i)

充分大,

其他显然

ii)

iii)

iv)

一样在的邻域内全纯

v)

12.8.14 对于

,记

i)证明:

上局部可积且有界

ii)证明:

iii)证明:当

时,

iv)证明:

可延拓成
的一个邻域上的全纯函数

Proof

i)

ii)

iii)

iv)

的邻域中全纯,因为
上无零点,故其在
的邻域内无零点,故可延拓成
的一个邻域内的全纯函数

12.8.15 设

,记

i)证明:

是整函数

对于任何

,充分小的

的一个邻域中全纯,记

ii)证明:

iii)证明:当

时,有

iv)证明:当

时,有

v)证明:

其中

vi)记

,证明

vii)证明:当

时,有

其中

viii)证明:当

时,有

ix)证明:当

时,有

x)证明:

xi)证明:下面的积分收敛,且

xii)证明:

Proof

i)同理

ii)由Cauchy可得

iii)

iv)

v)显然

vi)因为

是整函数

vii)

viii)同理

ix)在

上,

x)

xi)由

的任意性可知

xii)

QED

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值