tutte定理证明hall定理_分析中的一些反例及代数基本定理的拓扑与复变证明

整理了一些小栗子。。。卑微。。。

并经证实代数基本定理的纯代数证明的没有的,评论区的那个链接(即迷神说的)也有些许问题,当然这是后来老师给我指出来的,彼时我已把抽代知识忘却。


1.可积函数列,一致收敛则积分与取极限可互换,反之不成立。

2.K紧集,(a)

在K上连续(b)逐点收敛于连续函数(c)
,那么
紧性不可少。

1、2反例:

3.每个有界的复数序列必有收敛子列,而对于函数序列,

是某紧集上
一致有界的连续函数序列, 未必有收敛子列

反例:

,(使用Lebesgue控制收敛定理)

若加上条件,函数序列单调,则存在收敛子列。

构造思路:用对角线法取子列对一切有理数点

收敛,比如说收敛到
;对任何
定义
,一切
; 可证明
在连续的每个点上收敛,由于单调则可数个间断点,再选取子列在每个间断点上收敛。

4.每个收敛列不一定包含一致收敛子序列

反例:

,不存在一致收敛子序列因为

对于函数列的收敛子序列是否一定存在,它的充分条件为等度连续、逐点有界(此时必一致有界),或者改一致有界为逐点收敛,或者函数单调、一致有界。

5.(1)任何一个在

上连续的具紧支集的函数能够用无限次可微的具紧支集的函数一致逼近

(2)每一个在闭区间上连续的函数在这个区间上能够用代数多项式一致逼近

(3)连续的周期函数可用三角多项式一致逼近

6.傅里叶级数未必收敛到原函数,却在平方积分的意义下收敛到原函数, 即

7.两个基础的不等式

(a)Holder不等式

(b) Minkowski不等式

8.ODE判断解的存在唯一性

(a)

满足Lipschitz条件

(b)Osgood条件

(c)Cauchy存在定理,实解析

(d)Banach压缩映射

但只要引入另外范数,

条件可去,

,只要取
即可

(e)

单调不增

9.第一比较定理的导数在初值点的严格比较关系不可去

反例

10.简要地说说
代数基本定理的证明

代数基本定理:复数域是代数闭的,i.e.任意一个非常值复系数多项式都有一个复根。

拓扑证明的思路就是把变量想象成在复平面上奔跑的狗,半径足够大时,人牵着狗绕着原点转圈,人转了几圈,狗也转了几圈;半径小时,狗就待在常数点周围,不绕原点转圈了。由于狗在连续运动,它从待在常数点周围到绕着原点转圈,必定在某时要经过原点。

复变证明,我把它从《Complex Analysis》Stein上面搬过来

It's quite elegant.

Firstly, I will state Liouville's thm and give its proof.

(Liouville's theorem) If

is entire and bounded, then
is constant.

Proof. It suffices to prove that

, since
is connected, then
is const.

For each

and all
, the Cauchy inequalities yield

where B is a bound for

. Letting
gives the desired result.

Then, we can give an elegant proof of the fundamental theorem of algebra.

(fundamental theorem of algebra) Every non-constant polynomial

with complex coefficients has a root in
.

Proof. If

has no roots, then
is bouded holomorphic function. To see this, we can of course assume that
,and write

whenever

. Since each term in the parentheses goes to 0 as
, we conclude that there exists
so that if
, then

whenever
.

In particular,

is bounded from below when
. Since
is continuous and has no roots in the disc
, it is bounded from below in that disc as well, thereby proving our claim.

By Liouville's theorem we then conclude that

is constant. This contradicts our assumption that
is non-constant and that ends the proof.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值