一张图带你看完图论第五章(包含全部考点,含定义、定理、公式、推导证明和所有例题)

本文详细介绍了图论中的关键概念,包括匹配、完美匹配、最大匹配以及Tutte定理。重点讨论了如何寻找最优匹配的匈牙利算法,并探讨了偶图的匹配与覆盖问题,提供了相等子图和可行顶点标号在求解最优匹配中的应用。此外,还提到了K因子分解及其在正则图中的性质。
摘要由CSDN通过智能技术生成

付费大佬可以联系我把你们加入思维导图协作,看更加具体清楚地思维导图/敬礼

(思维导图在最后,可以直接看图不看文字)

5.1 匹配

  • 匹配(边独立集)M是G的不相邻边组成的边子集(无环)
    • 饱和点 v是匹配M中某边的端点,则称v为M饱和点
    • 完美匹配 G中每个顶点均为M饱和点,则M为G的完美匹配
      • 最优匹配 在赋权完全偶图 寻找一个具有最大权值的完美匹配
    • 最大匹配 若M是G包含边数最多的匹配,则M为G的最大匹配
  • M交错路 M中的边和非M的边交替组成的路
    • M可扩路 起点与终点为M非饱和点的路
      • M是G的最大匹配 当且仅当 G不含M可扩路
      • 中间的点一定都是M饱和点,起始非M边 然后交错 最后非M边
  • 5.3 Tutte定理与完美匹配
    • 偶数阶图G 有完美匹配 当且仅当 o(G-S)≤|S| 对所有S属于V成立(任意删去s个顶点,所得图奇分支个数<=删去点数)
      • 奇分支o(G) 拥有奇数个顶点
    • 没有割边的三正则图 一定有完美匹配(每条边都在圈之中,彼得森图)有割边的三正则图 不一定没有完美匹配
    • 什么样的树有完美匹配?o(T‒v)=1
      • 因为T有完美匹配,由Tutte定理知o(T‒v)≤1显然,T是偶数阶的图,于是o(T‒v)≥1。因此,o(T‒v)=1。
  • 5.4 因子分解
    • 因子:至少含G一条边的生成子图(非空生成子图)K因子-K正则的因子
      • 一因子的边集构成一个完美匹配(因为因子是边导出生成子图,要包含所有顶点,所以存在1因子必然有完美匹配)二因子的连通分支为一个圈(多个独立圈,H圈一定是二因子,但二因子不一定是H圈,连通的二因子是H圈)
    • 0
      点赞
    • 1
      收藏
      觉得还不错? 一键收藏
    • 0
      评论
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值