python 多元线性回归_多元线性回归思路详解

v2-c3f044b356b91f2de321bf6de11d4191_1440w.jpg?source=172ae18b

接着上篇一元线性回归的结果,我们可以实现多元线性回归吗?

lm_s = ols('avg_exp ~ Income+Age+dist_home_val+dist_avg_income', data=exp).fit()
lm_s.summary()

v2-5a53c1524c64652ff0ad1dea06893213_b.jpg

可以看到的是,R 平方确实提升了,但是红框中的 t 检验得到的 p 值似乎太大(样本量100,显著度取10%),也就是说这些变量与 Y 的相关性不大,也就是我们接下来要解决的问题,变量的筛选。

多元线性回归在选择自变量进入模型的方式时,有以下几种技术:

  • 向前法
  • 向后法
  • 逐步法

决策的指标可为偏回归平方和,AIC/BIC、R方等。

AIC=2k+n(log(RSS/n)), k—解释变量个数,RSS—残差的离差平方和

具体的步骤是:

  1. 先用每一个 X 与 Y 做相关性检验,留下两者有相关性
  2. 上一步检测的只是每一个单独的 X 与 Y 的关系,有可能多个 X 放一起的话,增量信息会变少,因此需要在筛选掉那些增量信息较少的变量 X。

关于各种方法的具体介绍:

  • 向前回归法:首先第一个变量进入回归方程,并进行F检验和T检验,计算残差平方和,记为S1,如果通过检验,则该变量保留,引入第二个变量,重新构建一个新的估计方程,并进行F检验和T检验,同
    时计算残差平方和,记为S2。从直观上看,增加一个新的变量后,回归平方和应该增大,残差平方和相应应该减少,即S2小于等于S1,即S1-S2的值是第二个变量的偏回归平方和,直观地说,如果该值
    明显偏大,则说明第二个变量对因变量有显著影响,反之则没有显著影响。
  • 向后回归法:同向前回归法正好相反,首先,所有的X变量一次性进入模型进行F检验和T检验,然后逐个删除不显著的变量,删除的原则是根据其偏回归平方和的大小决定去留。如果偏回归平方和很大则保留,反之则删除。
  • 逐步回归法:综合向前和向后回归法的特点,变量一个个进入方程,在引入变量时需要利用偏回归平方和进行检验,当显著时才加入该变量,当方程加入了该变量后,又要对原有的老变量重新用偏回归平方和进行检验,一旦某变量变得不显著时要删除该变量,如此下去,直到老变量均不可删除,新变量也无法加入为止。

向前选择具体步骤:

v2-851fafe14101b55052f8a1bf956ce1f5_b.jpg

v2-7c7f1aba0abda4cafb3735fa92ee44fc_b.jpg

后向消元:

v2-031d851067e5e9ce8c313342f49cc34e_b.jpg

逐步选择:

v2-bb35ab907915a00e5229a889efe7e76c_b.jpg

v2-87b972ddf2b54cc00a582bd9544a77cd_b.jpg

v2-c55222998e515fe07f047cf9005b46d3_b.jpg

而在 python 中,没有实现好的方法,所以我们需要自己写一个函数实现向前回归法:

# ### 多元线性回归的变量筛选
'''forward select'''
def forward_select(data, response):
    remaining = set(data.columns)
    remaining.remove(response)
    selected = []
    current_score, best_new_score = float('inf'), float('inf')
    while remaining:
        aic_with_candidates=[]
        for candidate in remaining:
            formula = "{} ~ {}".format(
                response,' + '.join(selected + [candidate]))
            aic = ols(formula=formula, data=data).fit().aic
            # 这里去的是 aic ,bic 也可以,越小越好
            aic_with_candidates.append((aic, candidate))
        aic_with_candidates.sort(reverse=True)
        best_new_score, best_candidate=aic_with_candidates.pop()
        if current_score > best_new_score: 
            remaining.remove(best_candidate)
            selected.append(best_candidate)
            current_score = best_new_score
            print ('aic is {},continuing!'.format(current_score))
        else:        
            print ('forward selection over!')
            break

    formula = "{} ~ {} ".format(response,' + '.join(selected))
    print('final formula is {}'.format(formula))
    model = ols(formula=formula, data=data).fit()
    return(model)
data_for_select = exp[['avg_exp', 'Income', 'Age', 'dist_home_val', 
                       'dist_avg_income']]
lm_m = forward_select(data=data_for_select, response='avg_exp')
print(lm_m.rsquared)
aic is 1007.6801413968115,continuing!
aic is 1005.4969816306302,continuing!
aic is 1005.2487355956046,continuing!
forward selection over!
final formula is avg_exp ~ dist_avg_income + Income + dist_home_val 
0.5411512928411949

这里使用的评价依据是 AIC ,但是筛选之后结果如下

lm_s = ols('avg_exp ~ Income+dist_home_val+dist_avg_income', data=exp).fit()
lm_s.summary()

v2-67158501ad5774af51378ff23a69839c_b.jpg

重新构建的模型,图中红框的结果仍然 p 值大于0.1,原因是向前回归法,是一种贪婪算法,只求 AIC

最小,但是经过这个过程之后,不符合要求的变量会大大减小。实际应用中,不会只靠一种方法就能够完全解决问题,需要多种方式结合。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值