python求解二次规划_在Python中利用CVXOPT求解二次规划问题

工作中需要用到cvxopt,cvxopt安装有坑,大家注意下.

1.首先一定要卸载numpy,无论是直接安装的,还是anaconda安装的,主要是必须用whl安装numpy才不会有包的冲突

2.二次规划包的使用

二次规划的标准形式如下

Python 代码如下

from cvxopt importmatriximportcvxopt.solvers as sol

result= sol.qp(P, Q, G, h, A, b)

问题描述:

在实际生活中,我们经常会遇到一些优化问题,简单的线性规划可以作图求解,但是对于目标函数包含二次项时,则需要另觅它法在金融实践中,马科维茨均方差模型就有实际的二次优化需求

作为金融实践中常用的方法,本篇将对CVXOPT中求解二次规划的问题进行举例详细说明,关于该方法在均方差优化中的实践应用,参见后续发帖

1、二次规划问题的标准形式

min12xTPx+qTx

s.t.Gx≤h

Ax=b

上式中,x为所要求解的列向量,xT表示x的转置

接下来,按步骤对上式进行相关说明:

上式表明,任何二次规划问题都可以转化为上式的结构,事实上用cvxopt的第一步就是将实际的二次规划问题转换为上式的结构,写出对应的P、q、G、h、A、b目标函数若为求max,可以通过乘以−1,将最大化问题转换为最小化问题Gx≤b表示的是所有的不等式约束,同样,若存在诸如x≥0的限制条件,也可以通过乘以−1转换为"≤"的形式Ax=b表示所有的等式约束

2、以一个标准的例子进行过程说明

min(x,y)12x2+3x+4y

s.t.x,y≥0

x+3y≥15

2x+5y≤100

3x+4y≤80

例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:

min(x,y)12[x\y]T[10\00][x\y]+[3\4]T[x\y]

[−10 0−1\-1−3 25 34][x\y]≤[0\0\-15\100\80]

如上所示,目标函数和限制条件均转化成了二次规划的标准形式,这是第一步,也是最难的一步,接下来的事情就简单了对比上式和标准形式,不难得出:P=[10\00],q=[3\4],G=[−10 0−1\-1−3 25 34],h=[0\0\-15\100\80]

接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么

from cvxopt import solvers, matrix

P = matrix([[1.0,0.0],[0.0,0.0]]) # matrix里区分int和double,所以数字后面都需要加小数点

q = matrix([3.0,4.0])

G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])

h = matrix([0.0,0.0,-15.0,100.0,80.0])

sol = solvers.qp(P,q,G,h) # 调用优化函数solvers.qp求解

print sol['x'] # 打印结果,sol里面还有很多其他属性,读者可以自行了解

pcost dcost gap pres dres

0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01

1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00

2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00

3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01

4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01

5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16

6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16

7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16

8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16

Optimal solution found.

[ 7.13e-07]

[ 5.00e+00]

看了上面的代码,是不是觉得很简单。因为难点不在代码,而是在于将实际优化问题转化为标准形式的过程在上面的例子中,并没有出现等号,当出现等式约束时,过程一样,找到A,b,然后运行代码 sol = solvers.qp(P,q,G,h,A,b) 即可求解

扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵

from cvxopt import solvers, matrix

import numpy as np

P = matrix(np.diag([1.0,0])) # 对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)

q = matrix(np.array([3.0,4]))

G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))

h = matrix(np.array([0.0,0,-15,100,80]))

sol = solvers.qp(P,q,G,h)

pcost dcost gap pres dres

0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01

1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00

2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00

3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01

4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01

5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16

6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16

7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16

8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16

Optimal solution found.

先写到这吧,关于二次规划在均方差优化中的实践应用,参见后续发帖,欢迎交流~~出处

发布于 2018-05-11

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Python求解二次规划(cvxopt)是使用cvxopt的函数来实现的。将二次规划问题转化为标准的凸优化问题,然后通过cvxopt的函数来求解得到问题的最优解。 首先,需要安装cvxopt库,可以使用pip install cvxopt命令进行安装。 在Python,可以使用cvxopt的matrix和solvers来定义和求解二次规划问题。 首先,通过导入cvxopt库,可以使用matrix函数来定义二次规划问题的数据。matrix函数可以将数组转化为cvxopt的矩阵形式。 接下来,利用cvxopt的solvers函数来求解二次规划问题。solvers.qp函数是用于求解二次规划问题的主要函数。在函数需要提供二次规划问题的参数,如目标函数的系数,不等式约束的系数矩阵以及约束条件。 最后,使用solve函数来解决二次规划问题,并返回最优解。 例如,下面是一个使用cvxopt求解二次规划问题的例子: ```python from cvxopt import matrix, solvers # 定义二次规划问题的参数 P = matrix([[1.0, 0.0], [0.0, 1.0]]) q = matrix([-2.0, -3.0]) G = matrix([[-1.0, 0.0], [0.0, -1.0]]) h = matrix([0.0, 0.0]) A = matrix([[1.0, 1.0]]) b = matrix([1.0]) # 求解二次规划问题 sol = solvers.qp(P, q, G, h, A, b) # 输出最优解 print(sol['x']) ``` 这段代码会输出二次规划问题的最优解。其,P、q、G、h、A、b分别代表二次规划问题的目标函数系数、不等式约束的系数矩阵以及约束条件。 这就是使用cvxopt的函数来求解二次规划问题的基本步骤。可以根据具体的问题进行相应的调整和设置参数,求解问题的最优解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值