二次规划问题

本文探讨了在数学建模中常见的优化问题,特别是二次规划的应用。介绍了二次规划的基本要素——决策变量、目标函数和约束条件,并阐述了如何将问题转化为标准二次规划形式。通过Python的Cvxopt库,可以解决此类问题。然而,应注意并非所有二次规划都能找到全局最优解,可能只得到局部最优。文章还提供了相关资源以深入理解二次规划的理论基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在数学建模问题中,优化问题是极为常见的。解决优化问题的方法很多,这里主要谈谈规划类算法。

规划类算法首先要明确三个要素——决策变量,目标函数和约束条件。在论文中一定要明确体现这三个要素。实际问题中,往往涉及到不止一个决策变量,此时目标函数常含有不同变量的乘积形式,如果相乘的变量至多两个,就可以应用二次规划进行求解。

二次规划的标准形式如下,和线性规划类似,都要化成求解最小值。(如果想求最大就乘上 -1,转变为求解最小值)约束条件包括等式约束和不等式约束,其中P、G、A都是矩阵,q、h、b都是列向量。

将初始问题转化为标准二次规划后,就可以调用Cvxopt.solvers.qp(P,q,G,h,A,b)函数进行求解了。

具体实例可以参考这篇博客:python求解二次规划 使用python求解二次规划的问题(IT技术)

值得注意的是,并不是所有的二次规划问题都可以求出全局最优解,很多情况下只能求出一个局部最优。二次规划的基础知识理论(更新中)_CHH3213的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值