【MPC】①二次规划问题MATLAB求解器quadprog

本文详细介绍了二次规划问题在MATLAB中的标准形式,包括正定矩阵的概念及其在二次规划中的作用。通过quadprog函数,演示了如何解决带有线性不等式和等式约束的二次规划问题,并给出了具体示例代码和输出结果。此外,还提供了矩阵正定性的MATLAB判断方法及生成正定、半正定、负定矩阵的示例。

一、概述

二次规划是指约束为线性的二次优化问题。在Matlab中,quadprog是具有线性约束的二次目标函数求解器。

(一)二次规划标准形式

min ⁡ x 1 2 x T H x + f T x \mathop {\min }\limits_x \frac{1}{2}{{\bf{x}}^{\bf{T}}}{\bf{Hx}} + {{\bf{f}}^{\bf{T}}}{\bf{x}} xmin21xTHx+fTx
在这里插入图片描述其实H是Hessian 阵,是n乘n的对称阵。

1、海森矩阵的正定性与函数最优性

  • 如果 Hessian 矩阵是半正定的,则我们说该式是一个凸二次规划,在这种情况下该问题的困难程度类似于线性规划。如果有至少一个向量满足约束并且在 可行域 有下界,则凸二次规划问题就有一个全局最小值。
  • 如果是正定的,则这类二次规划为严格的凸二次规划,那么全局最小值就是唯一的。
  • 如果是一个 不定矩阵 ,则为非凸二次规划,这类二次规划更有挑战性,因为它们有多个平稳点和局部极小值点。

2、基本数学概念

  • 基础概念:https://blog.csdn.net/jbb0523/article/details/50598523
  • 凸 严格凸,举例:https://zhuanlan.zhihu.com/p/399549564

3、对称阵的正定性判断

  • 正定矩阵:矩阵的所有特征值均大于0
  • 半正定矩阵:矩阵的所有特征值均非负
  • 负定矩阵:矩阵所有特征值均小于0

https://blog.csdn.net/Infinity_07/article/details/109569450

在这里插入图片描述

4、matlab正、半正、负定阵生成,与quadprog验证
(1)matlab判断正定性:

% 判断矩阵m是正定、半正定还是负定
m = [2 -1; -1 2]; 

if issymmetric(m) % 检查矩阵是否对称
    % disp('矩阵对称');
    d = eig(m); % 计算矩阵特征值
    if all(d > 0)
        disp('矩阵正定');
    elseif all(d >= 0)
        disp('矩阵半正定');
    else
        disp('矩阵负定');
    end
else
    disp('矩阵不对称');
end

(2)matlab产生正定阵的操作

https://blog.csdn.net/zhao523520704/article/details/52918376/

H_posi=diag([1,2,3]);
H_semi=diag([0,2,3]);
H_nega=diag([-1,-2,-3]);

(二)输入参数

符号参数含义
H二次目标矩阵
f线性目标向量
A线性不等式矩阵
b线性不等式向量
Aeq线性等式约束矩阵
beq线性等式约束向量
lb下界
ub上界

(三)输出参数

符号参数含义
x解,以实数向量形式返回
wsout解的热启动对象
fval再解处的目标函数值
exitflagquadprog停止的原因
output有关优化过程的信息,以结构体形式返回
lambda解处的拉格朗日乘数

二、MATLAB基础语法

x = quadprog(H,f)
x = quadprog(H,f,A,b)
x = quadprog(H,f,A,b,Aeq,beq)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)
x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)
x = quadprog(problem)
[x,fval] = quadprog(___)
[x,fval,exitflag,output] = quadprog(___)
[x,fval,exitflag,output,lambda] = quadprog(___)
[wsout,fval,exitflag,output,lambda] = quadprog(H,f,A,b,Aeq,beq,lb,ub,ws)

三、MATLAB典型求解样例

(一)具有线性不等式约束的二次规划

优化问题为:

H = [1 -1; -1 2]; 
f = [-2; -6];
A = [1 1; -1 2; 2 1];
b = [2; 2; 3];
[x,fval,exitflag,output,lambda] = quadprog(H,f,A,b);

x =
0.6667
1.3333
fval = -8.2222
exitflag =
1

(二)具有线性等式约束的二次规划

在这里插入图片描述

H = [1 -1; -1 2]; 
f = [-2; -6];
Aeq = [1 1];
beq = 0;
[x,fval,exitflag,output,lambda] = ...
   quadprog(H,f,[],[],Aeq,beq)

x = -0.8000
0.8000
fval = -1.6000
exitflag =
1

(三)具有线性约束和边界的二次规划

在这里插入图片描述

H = [1,-1,1
    -1,2,-2
    1,-2,4];
f = [2;-3;1];
lb = zeros(3,1);
ub = ones(size(lb));
Aeq = ones(1,3);
beq = 1/2;
x = quadprog(H,f,[],[],Aeq,beq,lb,ub)
<think>好的,用户让我介绍一下quadprog,我需要先弄清楚这是什么。嗯,quadprog应该是一个用于二次规划的工具包,可能在MATLAB或者R语言里。我得确认一下它的具体应用场景和功能。 首先,二次规划是优化问题的一种,目标函数是二次的,约束是线性的。quadprog的作用就是解决这类问题。我需要解释清楚它的数学模型,比如目标函数的形式,约束条件有哪些类型,比如等式和不等式约束。 接下来,用户可能需要知道如何使用quadprog。例如,在MATLAB中调用quadprog函数需要输入哪些参数,比如H矩阵、f向量,还有约束矩阵A、b等。要详细说明每个参数的意义,以及如何根据实际问题来构造这些参数。 可能还需要提到算法,quadprog背后的算法通常是有效集法或内点法,这些算法的基本思想是什么,适用于什么样的情况。不过用户可能更关注使用而不是理论,所以这部分可以简要带过。 另外,应用场景也很重要。二次规划在金融、工程控制、机器学习等领域都有应用,比如投资组合优化、支持向量机等。举几个例子会让用户更容易理解。 还要注意用户可能遇到的问题,比如如何确保H矩阵是正定的,如何处理无解的情况,或者常见的错误提示。这些实际问题对用户来说可能很有帮助。 最后,给出一个简单的代码示例会更好,比如在MATLAB中如何用quadprog解决一个具体的二次规划问题。这样用户可以直接参考并应用到自己的项目中。 需要检查是否有遗漏的部分,比如不同语言中quadprog的实现是否有差异,或者是否有替代的工具包。但根据用户的问题,可能主要关注MATLAB或R中的quadprog,所以先集中在这两方面。 总之,结构应该是先介绍二次规划quadprog的作用,再详细说明使用方法、参数、算法,然后举例说明应用场景和示例代码,最后可能提到注意事项和常见问题。这样用户能逐步了解并应用这个工具。</think>quadprog 是用于求解二次规划(Quadratic Programming, QP)问题的工具包/函数,常见于MATLAB、R等编程环境。以下从5个方面系统介绍其原理与应用: --- ### 一、二次规划数学模型 标准形式为: $$ \begin{aligned} \min_x \quad & \frac{1}{2}x^T H x + f^T x \\ \text{s.t.} \quad & A x \leq b \\ & A_{eq} x = b_{eq} \\ & lb \leq x \leq ub \end{aligned} $$ 其中: - $H$ 为对称矩阵(需半正定保证凸性) - $f$ 为线性项系数向量 - $A$, $b$ 定义线性不等式约束 - $A_{eq}$, $b_{eq}$ 定义线性等式约束 - $lb$, $ub$ 为变量上下界 --- ### 二、quadprog 的核心功能 1. **输入参数**(以MATLAB为例): ```matlab [x, fval] = quadprog(H, f, A, b, Aeq, beq, lb, ub, x0, options) ``` - `H`, `f`:目标函数参数 - `A`, `b`, `Aeq`, `beq`:线性约束 - `lb`, `ub`:变量边界 - `x0`:初始猜测解(可选) 2. **输出结果**: - `x`:最优解向量 - `fval`:目标函数最优值 --- ### 三、算法原理 quadprog 主要采用两类算法: 1. **有效集法(Active-Set Method)** - 通过迭代识别活跃约束(等式约束或边界约束) - 在活跃约束子空间上求解KKT条件 - 适合中小规模问题 2. **内点法(Interior-Point Method)** - 通过障碍函数处理不等式约束 - 在可行域内部寻优 - 适合大规模稀疏问题 --- ### 四、典型应用场景 | 领域 | 具体问题 | 目标函数示例 | |--------------|------------------------------|--------------------------------| | 金融 | 投资组合优化 | 最小化风险 $\text{Var}(R_p)$ | | 控制工程 | 模型预测控制(MPC) | 最小化跟踪误差 | | 机器学习 | 支持向量机(SVM) | 最大化分类间隔 | | 生产调度 | 资源分配优化 | 最小化生产成本 | --- ### 五、MATLAB 示例代码 求解以下QP问题: $$ \begin{aligned} \min_x \quad & \frac{1}{2}x_1^2 + x_2^2 - x_1x_2 - 2x_1 - 6x_2 \\ \text{s.t.} \quad & x_1 + x_2 \leq 2 \\ & -x_1 + 2x_2 \leq 2 \\ & 2x_1 + x_2 \leq 3 \\ & x_1 \geq 0, x_2 \geq 0 \end{aligned} $$ MATLAB实现: ```matlab H = [1 -1; -1 2]; % 二次项系数矩阵 f = [-2; -6]; % 一次项系数向量 A = [1 1; -1 2; 2 1]; b = [2; 2; 3]; lb = [0; 0]; % 变量下界 [x, fval] = quadprog(H, f, A, b, [], [], lb); ``` --- ### 六、注意事项 1. **矩阵正定性**:若 $H$ 非正定,可能得到局部最优解或无解 2. **约束冲突**:需确保可行域非空 3. **性能优化**:对大规模问题建议使用稀疏矩阵存储 若需处理非凸问题,可尝试`fmincon`或全局优化工具箱。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后厂村路蔡徐坤

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值