柯西-施瓦茨不等式积分形式的证明

柯西-施瓦茨不等式的积分形式叙述如下: 对于在区间 [ a , b ] [a, b] [a,b] 上平方可积的函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x),有:

( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) \left( \int_a^b f(x)g(x) dx \right)^2 \le \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) (abf(x)g(x)dx)2(abf(x)2dx)(abg(x)2dx)

证明方法有多种,这里介绍两种常用的方法:

方法一:利用二次函数的非负性

考虑以下二次函数:

ϕ ( t ) = ∫ a b ( t f ( x ) + g ( x ) ) 2 d x \phi(t) = \int_a^b (tf(x) + g(x))^2 dx ϕ(t)=ab(tf(x)+g(x))2dx

由于被积函数 ( t f ( x ) + g ( x ) ) 2 ≥ 0 (tf(x) + g(x))^2 \ge 0 (tf(x)+g(x))20,因此积分 ϕ ( t ) ≥ 0 \phi(t) \ge 0 ϕ(t)0 对任意实数 t t t 成立。展开 ϕ ( t ) \phi(t) ϕ(t),得到:

ϕ ( t ) = ∫ a b ( t 2 f ( x ) 2 + 2 t f ( x ) g ( x ) + g ( x ) 2 ) d x = t 2 ∫ a b f ( x ) 2 d x + 2 t ∫ a b f ( x ) g ( x ) d x + ∫ a b g ( x ) 2 d x \phi(t) = \int_a^b (t^2 f(x)^2 + 2t f(x)g(x) + g(x)^2) dx = t^2 \int_a^b f(x)^2 dx + 2t \int_a^b f(x)g(x) dx + \int_a^b g(x)^2 dx ϕ(t)=ab(t2f(x)2+2tf(x)g(x)+g(x)2)dx=t2abf(x)2dx+2tabf(x)g(x)dx+abg(x)2dx

这是一个关于 t t t 的二次函数,由于 ϕ ( t ) ≥ 0 \phi(t) \ge 0 ϕ(t)0 对所有 t t t 成立,这意味着其判别式必须是非正的。即:

( 2 ∫ a b f ( x ) g ( x ) d x ) 2 − 4 ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) ≤ 0 \left( 2 \int_a^b f(x)g(x) dx \right)^2 - 4 \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) \le 0 (2abf(x)g(x)dx)24(abf(x)2dx)(abg(x)2dx)0

化简后得到柯西-施瓦茨不等式的积分形式:

( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) \left( \int_a^b f(x)g(x) dx \right)^2 \le \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) (abf(x)g(x)dx)2(abf(x)2dx)(abg(x)2dx)

方法二:利用向量内积的性质

我们可以将函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 看作是函数空间中的向量。定义函数空间中的内积为:

⟨ f , g ⟩ = ∫ a b f ( x ) g ( x ) d x \langle f, g \rangle = \int_a^b f(x)g(x) dx f,g=abf(x)g(x)dx

以及向量的范数为:

∥ f ∥ = ⟨ f , f ⟩ = ∫ a b f ( x ) 2 d x \|f\| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f(x)^2 dx} f=f,f =abf(x)2dx

那么柯西-施瓦茨不等式可以写成:

∣ ⟨ f , g ⟩ ∣ ≤ ∥ f ∥ ∥ g ∥ |\langle f, g \rangle| \le \|f\| \|g\| f,gf∥∥g

这个不等式是内积空间中柯西-施瓦茨不等式的直接应用。其证明方法类似于有限维向量空间中的证明:

考虑向量 f − λ g f - \lambda g fλg,其中 λ \lambda λ 为实数。 则:

∥ f − λ g ∥ 2 = ⟨ f − λ g , f − λ g ⟩ = ⟨ f , f ⟩ − 2 λ ⟨ f , g ⟩ + λ 2 ⟨ g , g ⟩ ≥ 0 \|f - \lambda g\|^2 = \langle f - \lambda g, f - \lambda g \rangle = \langle f, f \rangle - 2\lambda \langle f, g \rangle + \lambda^2 \langle g, g \rangle \ge 0 fλg2=fλg,fλg=f,f2λf,g+λ2g,g0

λ = ⟨ f , g ⟩ ⟨ g , g ⟩ \lambda = \frac{\langle f, g \rangle}{\langle g, g \rangle} λ=g,gf,g (假设 ⟨ g , g ⟩ ≠ 0 \langle g, g \rangle \ne 0 g,g=0),代入上式,化简后即可得到柯西-施瓦茨不等式。如果 ⟨ g , g ⟩ = 0 \langle g, g \rangle = 0 g,g=0,则 ⟨ f , g ⟩ = 0 \langle f, g \rangle = 0 f,g=0,不等式也成立。

两种方法都证明了柯西-施瓦茨不等式的积分形式。第一种方法更直接,利用了二次函数的性质;第二种方法更具几何意义,将函数看作向量,利用了内积空间的性质。 选择哪种方法取决于个人的偏好和对相关数学工具的熟悉程度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值