柯西-施瓦茨不等式的积分形式叙述如下: 对于在区间 [ a , b ] [a, b] [a,b] 上平方可积的函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x),有:
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) \left( \int_a^b f(x)g(x) dx \right)^2 \le \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) (∫abf(x)g(x)dx)2≤(∫abf(x)2dx)(∫abg(x)2dx)
证明方法有多种,这里介绍两种常用的方法:
方法一:利用二次函数的非负性
考虑以下二次函数:
ϕ ( t ) = ∫ a b ( t f ( x ) + g ( x ) ) 2 d x \phi(t) = \int_a^b (tf(x) + g(x))^2 dx ϕ(t)=∫ab(tf(x)+g(x))2dx
由于被积函数 ( t f ( x ) + g ( x ) ) 2 ≥ 0 (tf(x) + g(x))^2 \ge 0 (tf(x)+g(x))2≥0,因此积分 ϕ ( t ) ≥ 0 \phi(t) \ge 0 ϕ(t)≥0 对任意实数 t t t 成立。展开 ϕ ( t ) \phi(t) ϕ(t),得到:
ϕ ( t ) = ∫ a b ( t 2 f ( x ) 2 + 2 t f ( x ) g ( x ) + g ( x ) 2 ) d x = t 2 ∫ a b f ( x ) 2 d x + 2 t ∫ a b f ( x ) g ( x ) d x + ∫ a b g ( x ) 2 d x \phi(t) = \int_a^b (t^2 f(x)^2 + 2t f(x)g(x) + g(x)^2) dx = t^2 \int_a^b f(x)^2 dx + 2t \int_a^b f(x)g(x) dx + \int_a^b g(x)^2 dx ϕ(t)=∫ab(t2f(x)2+2tf(x)g(x)+g(x)2)dx=t2∫abf(x)2dx+2t∫abf(x)g(x)dx+∫abg(x)2dx
这是一个关于 t t t 的二次函数,由于 ϕ ( t ) ≥ 0 \phi(t) \ge 0 ϕ(t)≥0 对所有 t t t 成立,这意味着其判别式必须是非正的。即:
( 2 ∫ a b f ( x ) g ( x ) d x ) 2 − 4 ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) ≤ 0 \left( 2 \int_a^b f(x)g(x) dx \right)^2 - 4 \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) \le 0 (2∫abf(x)g(x)dx)2−4(∫abf(x)2dx)(∫abg(x)2dx)≤0
化简后得到柯西-施瓦茨不等式的积分形式:
( ∫ a b f ( x ) g ( x ) d x ) 2 ≤ ( ∫ a b f ( x ) 2 d x ) ( ∫ a b g ( x ) 2 d x ) \left( \int_a^b f(x)g(x) dx \right)^2 \le \left( \int_a^b f(x)^2 dx \right) \left( \int_a^b g(x)^2 dx \right) (∫abf(x)g(x)dx)2≤(∫abf(x)2dx)(∫abg(x)2dx)
方法二:利用向量内积的性质
我们可以将函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 看作是函数空间中的向量。定义函数空间中的内积为:
⟨ f , g ⟩ = ∫ a b f ( x ) g ( x ) d x \langle f, g \rangle = \int_a^b f(x)g(x) dx ⟨f,g⟩=∫abf(x)g(x)dx
以及向量的范数为:
∥ f ∥ = ⟨ f , f ⟩ = ∫ a b f ( x ) 2 d x \|f\| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f(x)^2 dx} ∥f∥=⟨f,f⟩=∫abf(x)2dx
那么柯西-施瓦茨不等式可以写成:
∣ ⟨ f , g ⟩ ∣ ≤ ∥ f ∥ ∥ g ∥ |\langle f, g \rangle| \le \|f\| \|g\| ∣⟨f,g⟩∣≤∥f∥∥g∥
这个不等式是内积空间中柯西-施瓦茨不等式的直接应用。其证明方法类似于有限维向量空间中的证明:
考虑向量 f − λ g f - \lambda g f−λg,其中 λ \lambda λ 为实数。 则:
∥ f − λ g ∥ 2 = ⟨ f − λ g , f − λ g ⟩ = ⟨ f , f ⟩ − 2 λ ⟨ f , g ⟩ + λ 2 ⟨ g , g ⟩ ≥ 0 \|f - \lambda g\|^2 = \langle f - \lambda g, f - \lambda g \rangle = \langle f, f \rangle - 2\lambda \langle f, g \rangle + \lambda^2 \langle g, g \rangle \ge 0 ∥f−λg∥2=⟨f−λg,f−λg⟩=⟨f,f⟩−2λ⟨f,g⟩+λ2⟨g,g⟩≥0
令 λ = ⟨ f , g ⟩ ⟨ g , g ⟩ \lambda = \frac{\langle f, g \rangle}{\langle g, g \rangle} λ=⟨g,g⟩⟨f,g⟩ (假设 ⟨ g , g ⟩ ≠ 0 \langle g, g \rangle \ne 0 ⟨g,g⟩=0),代入上式,化简后即可得到柯西-施瓦茨不等式。如果 ⟨ g , g ⟩ = 0 \langle g, g \rangle = 0 ⟨g,g⟩=0,则 ⟨ f , g ⟩ = 0 \langle f, g \rangle = 0 ⟨f,g⟩=0,不等式也成立。
两种方法都证明了柯西-施瓦茨不等式的积分形式。第一种方法更直接,利用了二次函数的性质;第二种方法更具几何意义,将函数看作向量,利用了内积空间的性质。 选择哪种方法取决于个人的偏好和对相关数学工具的熟悉程度。