伽玛分布matlab_神奇的伽玛函数 | 伽玛函数和伽玛分布……

伽玛函数是阶乘在实数与复数上的扩展,源于欧拉解决数列插值问题。文章介绍了伽玛函数的起源、发展,以及如何推导出伽玛函数的积分表示。伽玛函数与伽玛分布在概率统计中有广泛应用,如泊松分布和贝塔分布。MATLAB代码用于绘制伽玛函数曲线。
摘要由CSDN通过智能技术生成

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。伽玛函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。

我们通常看到的伽玛函数是这样的:

adf0f17ab2b9f643799b12c8e27f1cbc.png

这到底是个什么东西?有什么用?欧拉又是怎么发现它的?

d5b2af7e3791f4d40429f006436bb48d.png

  欧拉大神

1伽玛函数的起因

发现伽玛函数的起因是数列插值。数列插值问题,通俗地说就是把数列的通项公式从整数定义域扩展到实数。例如数列1,4,9,16,.....可以用通项公式n²表达,即便n为实数的时候,这个通项公式也是良好定义的。直观的说,就是可以找到一条平滑的曲线y = x²,该曲线能够通过所有的整数点(x, x²),从而可以把定义在整数域的公式扩展到实数域。

b9889dbfde9708a1cb660fd14aff6f6d.png

1728年,哥德巴赫开始处理阶乘序列的插值问题:1,2,6,24,120,720,...,既然可以计算2!, 3!,…,是否可以计算2.5!呢?把最初的一些(n, n!)的点画在坐标轴上,确实可以看到,能够画出一条通过这些点的平滑曲线。问题是,这条曲线是什么?

cd7387e8d2097319f7a4813e7477e03a.png

8d804864d90caeecff3180b751db100c.png

哥德巴赫无法解决阶乘往实数域上扩展的这个问题,于是写信请教尼古拉斯·贝努利和丹尼尔·贝努利两兄弟,由于欧拉当时正好和丹尼尔·贝努利在一块玩,他也因此得知了这个问题。之后欧拉于1729年完美地解决了这个问题,由此导致了伽玛函数的诞生。当时欧拉只有 22 岁,这让我感觉自己就是混吃等死的。

2发现伽玛函数

在某一个特殊的时刻,欧拉发现阶乘n!可以用一个无穷乘积表示:

be2ab67bd74be7d5ed97ddb09622f83f.png

如果有m项乘积:

a2d1c6f5f3614831ed846d35f89f02f6.png

当m远远大于n时,上式可继续计算:

c752a4c52c9553992165484dba74cf6b.png  

当m→∞时,无穷乘积的极限:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值