一。 Γ \Gamma Γ分布
指数分布是两次事件发生的时间间隔
Γ
\Gamma
Γ分布是n倍的指数分布
即,
Γ
\Gamma
Γ分布表示发生n次(
α
\alpha
α次)事件的时间间隔的概率分布。
其实 Γ \Gamma Γ分布 就是Possion分布在正实数集上的连续化版本
P o s s i o n ( X = k ∣ λ ) = λ k e − λ k ! Possion(X=k|\lambda )=\frac{\lambda ^ke^{-\lambda} }{k!} Possion(X=k∣λ)=k!λke−λ
可以看做横坐标是k,纵坐标便是X=k的概率分布: P o s s i o n ( X = k ∣ λ Possion(X=k|\lambda Possion(X=k∣λ), λ \lambda λ为一个常数,代表单位时间内事件发生的次数。
回忆一下Poisson分布的直观含义:
随机变量X代表出生婴儿的个数,P {X=k} 代表出生k个婴儿的概率,
λ \lambda λ为已知数,代表平均单位时间出生婴儿的个数。
求t时间内出生k个婴儿的概率:P {X=k} ,令t=1,就是
这个公式 P o s s i o n ( X = k ∣ λ ) = λ k e − λ k ! Possion(X=k|\lambda )=\frac{\lambda ^ke^{-\lambda} }{k!} Possion(X=k∣λ)=k!λke−λ
因此Possion公式的直观意义就是:
已知单位时间内平均出生 λ \lambda λ个婴儿, 得到单位时间内出生k个婴儿的概率。
如果将k看成是一个变量, Possion公式就是单位时间内出生婴儿个数的概率分布。
直观理解,当然是单位时间出生 λ \lambda λ个婴儿的概率最大。
在
P
o
i
s
s
o
n
分
布
中
,
λ
是
一
个
已
知
数
,
是
一
个
常
数
,
{\color{Red}{ 在Poisson分布中,\lambda 是一个已知数,是一个常数,}}
在Poisson分布中,λ是一个已知数,是一个常数,
如
果
我
们
把
λ
看
成
一
个
变
数
,
假
设
是
x
{\color{Red}{如果我们把\lambda看成一个变数,假设是x}}
如果我们把λ看成一个变数,假设是x
那
么
得
到
的
分
布
就
叫
G
a
m
m
a
分
布
{\color{Red}{那么得到的分布就叫Gamma分布}}
那么得到的分布就叫Gamma分布,显然Gamma比Poisson更高一维的分布。
= > 将 λ 转 为 一 个 连 续 实 数 x {\color{Red}{=> 将 \lambda 转为一个连续实数 x}} =>将λ转为一个连续实数x
在Gamma分布的密度中取 α = k + 1 \alpha =k+1 α=k+1,得
G a m m a ( x ∣ α = k + 1 ) = x k e − x Γ ( k + 1 ) = x k e − x k ! Gamma(x|\alpha =k+1)=\frac{x^{k} e^{-x} }{\Gamma (k+1)} = \frac{x^k e^{-x } }{k!} Gamma(x∣α=k+1)=Γ(k+1)xke−x=k!xke−x
G a m m a ( x , k ) = x k e − x k ! Gamma(x,k) = \frac{x^k e^{-x } }{k!} Gamma(x,k)=k!xke−x
由此可见,Gamma函数是一个关于x和k的二维概率分布。x是单位时间内事件发生的平均次数,k是单位时间内事件发生的某一特定次数,得到类似于下图,可见,它是一个指数分布,k与越接近,概率越大,在k与x相等的地方,概率达最大值。(如果将x固定一个常数,就是Poisson分布。)
所以,Gamma分布与Possion分布在数学形式上是一致的,只是Poisson分布是离散的,Gamma分布是连续的,可以直观的认为Gamma分布是Poission分布在正实数集上的连续化版本。
二。
Γ
\Gamma
Γ函数
定义
Γ
(
s
)
=
∫
0
+
∞
e
−
x
x
s
−
1
d
x
(
s
>
0
)
\Gamma (s)=\int_{0}^{+\infty }e^{-x}x^{s-1}dx(s>0)
Γ(s)=∫0+∞e−xxs−1dx(s>0)
性质
- s>0时,此反常积分收敛
-
Γ
(
s
+
1
)
=
s
Γ
(
s
)
(
s
>
0
)
\Gamma(s+1)=s\Gamma(s) (s>0)
Γ(s+1)=sΓ(s)(s>0),特别
Γ
(
n
+
1
)
=
n
!
\Gamma(n+1)=n!
Γ(n+1)=n!
3)当 s → 0 + s\to0+ s→0+时, Γ ( s ) → + ∞ \Gamma(s) \to +\infty Γ(s)→+∞ - Γ ( s ) Γ ( 1 − s ) \Gamma(s)\Gamma(1-s) Γ(s)Γ(1−s)= π s i n π s ( 0 < s < 1 ) , 则 Γ ( 1 2 ) = π \frac{\pi }{sin\pi s} (0<s<1), 则\Gamma (\frac{1}{2})=\sqrt{\pi} sinπsπ(0<s<1),则Γ(21)=π
$\Gamma(n) = (n-1)! $ , Gamma(5+1) = 5! =120
$\Gamma(s) = (s-1)! $ , 5Gamma(5) = 54! =120
三。
Γ
\Gamma
Γ函数应用
k
!
=
∫
0
∞
x
k
e
−
x
d
x
k!=\int_{0}^{\infty }x^ke^{-x}dx
k!=∫0∞xke−xdx
在
Γ
(
s
)
=
∫
0
∞
x
s
−
1
e
−
x
d
x
\Gamma(s)=\int_{0}^{\infty }x^{s-1}e^{-x}dx
Γ(s)=∫0∞xs−1e−xdx 中,
作x=u^2的代换可得
Γ
(
s
)
=
2
∫
0
∞
e
−
u
2
u
2
s
−
1
d
u
\Gamma (s)=2\int_{0}^{\infty }e^{-u^2}u^{2s-1}du
Γ(s)=2∫0∞e−u2u2s−1du
再令 t=2s-1,即有
∫
0
∞
e
−
u
2
u
t
d
u
\int_{0}^{\infty }e^{-u^2}u^{t}du
∫0∞e−u2utdu =
1
2
Γ
(
1
+
t
2
)
\frac{1}{2}\Gamma(\frac{1+t}{2})
21Γ(21+t), t>-1
特别,令
s
=
1
2
s=\frac{1}{2}
s=21, 可得概率论中常用积分
泊松积分
泊松积分:
∫
−
∞
∞
e
−
x
2
d
x
=
π
\int_{-\infty}^{\infty }e^{-x^2}dx=\sqrt{\pi}
∫−∞∞e−x2dx=π 是一个很重要的结论,在概率论中有重要应用。
∫
0
∞
e
−
x
2
d
x
=
π
2
\int_{0}^{\infty }e^{-x^2}dx=\frac{\sqrt{\pi}}{2}
∫0∞e−x2dx=2π
∫
−
∞
∞
e
−
x
2
d
x
=
π
\int_{-\infty}^{\infty }e^{-x^2}dx=\sqrt{\pi}
∫−∞∞e−x2dx=π
(可以用正态分布的公式证明,正态分布公式
Φ
(
x
)
=
1
2
π
∫
−
∞
∞
e
−
t
2
2
d
t
=
1
\Phi (x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}e^{-\frac{t^2}{2}}dt=1
Φ(x)=2π1∫−∞∞e−2t2dt=1)
参考链接:
Gamma分布Wiki百科
poisson-gamma-exponential 泊松-Gamma以及指数分布的关系
Gamma distribution in R语言
MATLAB Gamma
神奇的Gamma函数(scipy)