es java 搜索引擎_Spring Boot集成ElasticSearch实现搜索引擎的示例

本文介绍了如何使用Spring Boot集成ElasticSearch以实现搜索引擎。主要探讨了两大问题:数据在ES上的索引创建和Java与ES的交互。详细讲解了通过RestAPI(Jest方式)和Spring Data客户端两种方式集成ElasticSearch,并对比了两者优缺点,建议使用Jest方式因其兼容性和符合ES设计初衷。
摘要由CSDN通过智能技术生成

Elastic Search是一个开源的,分布式,实时搜索和分析引擎。Spring Boot为Elasticsearch及Spring Data Elasticsearch提供的基于它的抽象提供了基本的配置。Spring Boot提供了一个用于聚集依赖的spring-boot-starter-data-elasticsearch 'StarterPOM'。

ElasticSearch作为搜索引擎,我们需要解决2大问题:

1,  如何将被搜索的数据在ES上创建反向索引

2,  Java代码如何与ES交互

其中第一个大问题又分为两个小问题

1.1,如何初始化已有的数据

1.2,如何同步增量数据

第二个大问题也有两种集成方式

2.1 Spring Data 9300端口集成

2.2 Restful API 9200端口集成

本篇先解决第二大问题。

第一种方式,利用RestAPI方式,也叫Jest方式:

Pom.xml:

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

4.0.0

yejingtao.demo.springcloud

demo-jest-elasticsearch

0.0.1-SNAPSHOT

jar

demo-jest-elasticsearch

http://maven.apache.org

UTF-8

org.springframework.boot

spring-boot-starter-parent

1.5.6.RELEASE

org.springframework.boot

spring-boot-starter-web

org.springframework.boot

spring-boot-starter-data-elasticsearch

io.searchbox

jest

net.java.dev.jna

jna

Application.yml:

server:

port: 7081

spring:

elasticsearch:

jest:

uris:

- http://192.168.226.133:9200

read-timeout: 5000

注意这里是9200端口

主程序:最简单的Spring boot启动程序:

@SpringBootApplication

public class ESApplication {

public static void main(String[] args) {

SpringApplication.run(ESApplication.class);

}

}

定义好ES中的实体类和对ES操作的接口:

public class Entity implements Serializable{

private static final long serialVersionUID = -763638353551774166L;

public static final String INDEX_NAME = "index_entity";

public static final String TYPE = "tstype";

private Long id;

private String name;

public Entity() {

super();

}

public Entity(Long id, String name) {

this.id = id;

this.name = name;

}

public Long getId() {

return id;

}

public void setId(Long id) {

this.id = id;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

public interface CityESService {

void saveEntity(Entity entity);

void saveEntity(List entityList);

List searchEntity(String searchContent);

}

接口实现:

@Service

public class CityESServiceImpl implements CityESService{

private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);

@Autowired

private JestClient jestClient;

@Override

public void saveEntity(Entity entity) {

Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();

try {

jestClient.execute(index);

LOGGER.info("ES 插入完成");

} catch (IOException e) {

e.printStackTrace();

LOGGER.error(e.getMessage());

}

}

/**

* 批量保存内容到ES

*/

@Override

public void saveEntity(List entityList) {

Bulk.Builder bulk = new Bulk.Builder();

for(Entity entity : entityList) {

Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();

bulk.addAction(index);

}

try {

jestClient.execute(bulk.build());

LOGGER.info("ES 插入完成");

} catch (IOException e) {

e.printStackTrace();

LOGGER.error(e.getMessage());

}

}

/**

* 在ES中搜索内容

*/

@Override

public List searchEntity(String searchContent){

SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

//searchSourceBuilder.query(QueryBuilders.queryStringQuery(searchContent));

//searchSourceBuilder.field("name");

searchSourceBuilder.query(QueryBuilders.matchQuery("name",searchContent));

Search search = new Search.Builder(searchSourceBuilder.toString())

.addIndex(Entity.INDEX_NAME).addType(Entity.TYPE).build();

try {

JestResult result = jestClient.execute(search);

return result.getSourceAsObjectList(Entity.class);

} catch (IOException e) {

LOGGER.error(e.getMessage());

e.printStackTrace();

}

return null;

}

}

这里插入数据的方式给了两种,一种是单次API直接插入,一种是利用ES的bulk批量插入。

做一个controller方面我们测试:

启动后在浏览器中请求http://localhost:7081/entityController/search?name=%E4%BA%BA%E6%89%8B%E4%BA%95

得到结果:

b3cb4993324e957c79b12247e7b0e949.png

这里只返回了9条记录,而理论上ES默认的size是10,应该不是分页的问题,而是只能检索出9条匹配记录,用Kibana连上相同的搜索确认下:

cae65bc678a25d6e3bda0e709417df5e.png

这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“人”“手”“井”的都被搜索了出来,只是评分不同,如果想支持只能中文索引需要依赖ik插件

OK,RestFul方式对ElasticSearch的检索已经搞定了,更多的扩展可以慢慢研究下QueryBuilders里的源码和批注。

第二种方式,利用Spring Data客户端方式:

事先说明此方式有个弊端,让我掉了坑里好久才爬上来,Spring Data ElasticSearch必须与ElasticSearch版本相匹配,否则在对接时ES端会报版本不匹配错误,例如我ES是5.6.1版本,Spring boot是1.5.6版本,错误如下:

为解决这个问题我查找了一些资料,Spring Data与elasticsearch版本对应关系如下:

spring data elasticsearch

elasticsearch

3.0.0.RC2

5.5.0

3.0.0.M4

5.4.0

2.0.4.RELEASE

2.4.0

2.0.0.RELEASE

2.2.0

1.4.0.M1

1.7.3

1.3.0.RELEASE

1.5.2

1.2.0.RELEASE

1.4.4

1.1.0.RELEASE

1.3.2

1.0.0.RELEASE

1.1.1

而我用的Spring Boot 1.5.6版本对应的Spring Data ElasticSearch是2.1.6版本,不支持5.X的ES,所以报错。到本博文撰写为止,Spring Boot的RELEASE版本最新的是1.5.8,对应的Spring Data ElasticSearch是2.1.8,仍不支持5.X的ES,所以如果一定要使用Java客户端方式集成ES只能放弃Spring Boot直接使用Spring Data和Spring MVC,或者降低ES的版本使之与Spring boot匹配。

pom.xml依赖:

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

4.0.0

yejingtao.demo.springcloud

demo-data-elasticsearch

0.0.1-SNAPSHOT

jar

demo-data-elasticsearch

http://maven.apache.org

UTF-8

org.springframework.boot

spring-boot-starter-parent

1.5.8.RELEASE

org.springframework.boot

spring-boot-starter-web

org.springframework.boot

spring-boot-starter-data-elasticsearch

不再引用Jest。

application.yml:

server:

port: 7081

spring:

data:

elasticsearch:

cluster-nodes: 192.168.226.133:9300

cluster-name: my-es

repositories:

enabled: true

注意这里是9300端口

Controller、主程序、Service接口同Jest项目不变,不再罗列

实体类稍作变化,指定ES中的index和type:

@Document(indexName="index_entity", type="tstype")

多一个Repository接口,无需实现类,spring data标准用法:

/**

* Entity ES操作类

* @author yejingtao

*

*/

public interface EntityRepository extends ElasticsearchRepository{

}

Service实现类与Jest的天壤之别了,从语法上可以看出更像是对数据库层的操作:

@Service

public class CityESServiceImpl implements CityESService{

private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);

int PAGE_SIZE = 15; //默认分页大小

int PAGE_NUMBER = 0; //默认当前分页

String SCORE_MODE_SUM = "sum"; //权重分求和模式

Float MIN_SCORE = 10.0F; //由于无相关性的分值默认为1, 设置权重分最小值为10

@Autowired

EntityRepository entityRepository;

/**

* 保存内容到ES

*/

@Override

public Long saveEntity(Entity entity) {

Entity entityResult = entityRepository.save(entity);

return entityResult.getId();

}

/**

* 在ES中搜索内容

*/

@Override

public List searchEntity(int pageNumber, int pageSize, String searchContent){

if(pageSize==0) {

pageSize = PAGE_SIZE;

}

if(pageNumber<0) {

pageNumber = PAGE_NUMBER;

}

SearchQuery searchQuery = getEntitySearchQuery(pageNumber,pageSize,searchContent);

LOGGER.info("\n searchCity: searchContent [" + searchContent + "] \n DSL = \n "

+ searchQuery.getQuery().toString());

Page cityPage = entityRepository.search(searchQuery);

return cityPage.getContent();

}

/**

* 组装搜索Query对象

* @param pageNumber

* @param pageSize

* @param searchContent

* @return

*/

private SearchQuery getEntitySearchQuery(int pageNumber, int pageSize, String searchContent) {

FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery()

.add(QueryBuilders.matchPhraseQuery("name", searchContent),

ScoreFunctionBuilders.weightFactorFunction(1000))

//.add(QueryBuilders.matchPhraseQuery("other", searchContent),

//ScoreFunctionBuilders.weightFactorFunction(1000))

.scoreMode(SCORE_MODE_SUM).setMinScore(MIN_SCORE);

//设置分页,否则只能按照ES默认的分页给

Pageable pageable = new PageRequest(pageNumber, pageSize);

return new NativeSearchQueryBuilder().withPageable(pageable).withQuery(functionScoreQueryBuilder).build();

}

}

测试方式同Jest。

这两种方式,从设计上来讲属于两种思路,Spring Data的思路就是将ElasticSearch当自家的数据仓库来管理,直接通过Java客户端代码操作ES;Jest的思路是将ElasticSearch当为独立的服务端,自己作为客户端用兼容性最强的RestFul格式来与之交互。

个人比较倾向于Jest方式,第一兼容性好,不需要考虑版本的问题。第二,从ElasticSearch本身的设计上来分析,9200是对外服务端口,9300是内部管理和集群通信端口,请求9200获取搜索服务更符合ES的设计初衷,不会影响集群内部的通信。

以上比较分析仅代表个人观点,欢迎大神么交流批评。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值