Elastic Search是一个开源的,分布式,实时搜索和分析引擎。Spring Boot为Elasticsearch及Spring Data Elasticsearch提供的基于它的抽象提供了基本的配置。Spring Boot提供了一个用于聚集依赖的spring-boot-starter-data-elasticsearch 'StarterPOM'。
ElasticSearch作为搜索引擎,我们需要解决2大问题:
1, 如何将被搜索的数据在ES上创建反向索引
2, Java代码如何与ES交互
其中第一个大问题又分为两个小问题
1.1,如何初始化已有的数据
1.2,如何同步增量数据
第二个大问题也有两种集成方式
2.1 Spring Data 9300端口集成
2.2 Restful API 9200端口集成
本篇先解决第二大问题。
第一种方式,利用RestAPI方式,也叫Jest方式:
Pom.xml:
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0
yejingtao.demo.springcloud
demo-jest-elasticsearch
0.0.1-SNAPSHOT
jar
demo-jest-elasticsearch
http://maven.apache.org
UTF-8
org.springframework.boot
spring-boot-starter-parent
1.5.6.RELEASE
org.springframework.boot
spring-boot-starter-web
org.springframework.boot
spring-boot-starter-data-elasticsearch
io.searchbox
jest
net.java.dev.jna
jna
Application.yml:
server:
port: 7081
spring:
elasticsearch:
jest:
uris:
- http://192.168.226.133:9200
read-timeout: 5000
注意这里是9200端口
主程序:最简单的Spring boot启动程序:
@SpringBootApplication
public class ESApplication {
public static void main(String[] args) {
SpringApplication.run(ESApplication.class);
}
}
定义好ES中的实体类和对ES操作的接口:
public class Entity implements Serializable{
private static final long serialVersionUID = -763638353551774166L;
public static final String INDEX_NAME = "index_entity";
public static final String TYPE = "tstype";
private Long id;
private String name;
public Entity() {
super();
}
public Entity(Long id, String name) {
this.id = id;
this.name = name;
}
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
public interface CityESService {
void saveEntity(Entity entity);
void saveEntity(List entityList);
List searchEntity(String searchContent);
}
接口实现:
@Service
public class CityESServiceImpl implements CityESService{
private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);
@Autowired
private JestClient jestClient;
@Override
public void saveEntity(Entity entity) {
Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();
try {
jestClient.execute(index);
LOGGER.info("ES 插入完成");
} catch (IOException e) {
e.printStackTrace();
LOGGER.error(e.getMessage());
}
}
/**
* 批量保存内容到ES
*/
@Override
public void saveEntity(List entityList) {
Bulk.Builder bulk = new Bulk.Builder();
for(Entity entity : entityList) {
Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();
bulk.addAction(index);
}
try {
jestClient.execute(bulk.build());
LOGGER.info("ES 插入完成");
} catch (IOException e) {
e.printStackTrace();
LOGGER.error(e.getMessage());
}
}
/**
* 在ES中搜索内容
*/
@Override
public List searchEntity(String searchContent){
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//searchSourceBuilder.query(QueryBuilders.queryStringQuery(searchContent));
//searchSourceBuilder.field("name");
searchSourceBuilder.query(QueryBuilders.matchQuery("name",searchContent));
Search search = new Search.Builder(searchSourceBuilder.toString())
.addIndex(Entity.INDEX_NAME).addType(Entity.TYPE).build();
try {
JestResult result = jestClient.execute(search);
return result.getSourceAsObjectList(Entity.class);
} catch (IOException e) {
LOGGER.error(e.getMessage());
e.printStackTrace();
}
return null;
}
}
这里插入数据的方式给了两种,一种是单次API直接插入,一种是利用ES的bulk批量插入。
做一个controller方面我们测试:
启动后在浏览器中请求http://localhost:7081/entityController/search?name=%E4%BA%BA%E6%89%8B%E4%BA%95
得到结果:
这里只返回了9条记录,而理论上ES默认的size是10,应该不是分页的问题,而是只能检索出9条匹配记录,用Kibana连上相同的搜索确认下:
这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“人”“手”“井”的都被搜索了出来,只是评分不同,如果想支持只能中文索引需要依赖ik插件
OK,RestFul方式对ElasticSearch的检索已经搞定了,更多的扩展可以慢慢研究下QueryBuilders里的源码和批注。
第二种方式,利用Spring Data客户端方式:
事先说明此方式有个弊端,让我掉了坑里好久才爬上来,Spring Data ElasticSearch必须与ElasticSearch版本相匹配,否则在对接时ES端会报版本不匹配错误,例如我ES是5.6.1版本,Spring boot是1.5.6版本,错误如下:
为解决这个问题我查找了一些资料,Spring Data与elasticsearch版本对应关系如下:
spring data elasticsearch
elasticsearch
3.0.0.RC2
5.5.0
3.0.0.M4
5.4.0
2.0.4.RELEASE
2.4.0
2.0.0.RELEASE
2.2.0
1.4.0.M1
1.7.3
1.3.0.RELEASE
1.5.2
1.2.0.RELEASE
1.4.4
1.1.0.RELEASE
1.3.2
1.0.0.RELEASE
1.1.1
而我用的Spring Boot 1.5.6版本对应的Spring Data ElasticSearch是2.1.6版本,不支持5.X的ES,所以报错。到本博文撰写为止,Spring Boot的RELEASE版本最新的是1.5.8,对应的Spring Data ElasticSearch是2.1.8,仍不支持5.X的ES,所以如果一定要使用Java客户端方式集成ES只能放弃Spring Boot直接使用Spring Data和Spring MVC,或者降低ES的版本使之与Spring boot匹配。
pom.xml依赖:
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
4.0.0
yejingtao.demo.springcloud
demo-data-elasticsearch
0.0.1-SNAPSHOT
jar
demo-data-elasticsearch
http://maven.apache.org
UTF-8
org.springframework.boot
spring-boot-starter-parent
1.5.8.RELEASE
org.springframework.boot
spring-boot-starter-web
org.springframework.boot
spring-boot-starter-data-elasticsearch
不再引用Jest。
application.yml:
server:
port: 7081
spring:
data:
elasticsearch:
cluster-nodes: 192.168.226.133:9300
cluster-name: my-es
repositories:
enabled: true
注意这里是9300端口
Controller、主程序、Service接口同Jest项目不变,不再罗列
实体类稍作变化,指定ES中的index和type:
@Document(indexName="index_entity", type="tstype")
多一个Repository接口,无需实现类,spring data标准用法:
/**
* Entity ES操作类
* @author yejingtao
*
*/
public interface EntityRepository extends ElasticsearchRepository{
}
Service实现类与Jest的天壤之别了,从语法上可以看出更像是对数据库层的操作:
@Service
public class CityESServiceImpl implements CityESService{
private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);
int PAGE_SIZE = 15; //默认分页大小
int PAGE_NUMBER = 0; //默认当前分页
String SCORE_MODE_SUM = "sum"; //权重分求和模式
Float MIN_SCORE = 10.0F; //由于无相关性的分值默认为1, 设置权重分最小值为10
@Autowired
EntityRepository entityRepository;
/**
* 保存内容到ES
*/
@Override
public Long saveEntity(Entity entity) {
Entity entityResult = entityRepository.save(entity);
return entityResult.getId();
}
/**
* 在ES中搜索内容
*/
@Override
public List searchEntity(int pageNumber, int pageSize, String searchContent){
if(pageSize==0) {
pageSize = PAGE_SIZE;
}
if(pageNumber<0) {
pageNumber = PAGE_NUMBER;
}
SearchQuery searchQuery = getEntitySearchQuery(pageNumber,pageSize,searchContent);
LOGGER.info("\n searchCity: searchContent [" + searchContent + "] \n DSL = \n "
+ searchQuery.getQuery().toString());
Page cityPage = entityRepository.search(searchQuery);
return cityPage.getContent();
}
/**
* 组装搜索Query对象
* @param pageNumber
* @param pageSize
* @param searchContent
* @return
*/
private SearchQuery getEntitySearchQuery(int pageNumber, int pageSize, String searchContent) {
FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery()
.add(QueryBuilders.matchPhraseQuery("name", searchContent),
ScoreFunctionBuilders.weightFactorFunction(1000))
//.add(QueryBuilders.matchPhraseQuery("other", searchContent),
//ScoreFunctionBuilders.weightFactorFunction(1000))
.scoreMode(SCORE_MODE_SUM).setMinScore(MIN_SCORE);
//设置分页,否则只能按照ES默认的分页给
Pageable pageable = new PageRequest(pageNumber, pageSize);
return new NativeSearchQueryBuilder().withPageable(pageable).withQuery(functionScoreQueryBuilder).build();
}
}
测试方式同Jest。
这两种方式,从设计上来讲属于两种思路,Spring Data的思路就是将ElasticSearch当自家的数据仓库来管理,直接通过Java客户端代码操作ES;Jest的思路是将ElasticSearch当为独立的服务端,自己作为客户端用兼容性最强的RestFul格式来与之交互。
个人比较倾向于Jest方式,第一兼容性好,不需要考虑版本的问题。第二,从ElasticSearch本身的设计上来分析,9200是对外服务端口,9300是内部管理和集群通信端口,请求9200获取搜索服务更符合ES的设计初衷,不会影响集群内部的通信。
以上比较分析仅代表个人观点,欢迎大神么交流批评。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。