np实现sigmoid_纯用NumPy实现神经网络

本文通过纯NumPy代码实现了一个简单的神经网络,详细介绍了权重初始化、激活函数、前向传播、反向传播、损失函数和参数更新等关键步骤,并通过一个分类问题与Keras模型进行了性能比较。
摘要由CSDN通过智能技术生成

摘要: 纯NumPy代码从头实现简单的神经网络。

Keras、TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型。前不久,我曾写过一篇文章,对神经网络是如何工作的进行了简单的讲解。该文章侧重于对神经网络中运用到的数学理论知识进行详解。本文将利用NumPy实现简单的神经网络,在实战中对其进行深层次剖析。最后,我们会利用分类问题对模型进行测试,并与Keras所构建的神经网络模型进行性能的比较。

Note:源码可在我的GitHub中查看。

在正式开始之前,需要先对所做实验进行构思。我们想要编写一个程序,使其能够创建一个具有指定架构(层的数量、大小以及激活函数)的神经网络,如图一所示。总之,我们需要预先对网络进行训练,然后利用它进行预测。

上图展示了神经网络在被训练时的工作流程。从中我们可以清楚的需要更新的参数数量以及单次迭代的不同状态。构建并管理正确的数据架构是其中最困难的一环。由于时间限制,图中所示的参数不会一一详解,有兴趣可点击此处进行了解。

神经网络层的初始化

首先,对每一层的权重矩阵W及偏置向量b进行初始化。在上图中,上标[l]表示目前是第几层(从1开始),n的值表示一层中的神经元数量。描述神经网络架构的信息类似于Snippet 1中所列内容。每一项都描述了单层神经网络的基本参数:input_dim,即输入层神经元维度;output_dim,即输出层神经元维度;activation,即使用的激活函数。

nn_architecture = [

{"input_dim": 2, "output_dim": 4, "activation": "relu"},

{"input_dim": 4, "output_dim": 6, "activation": "relu"},

{"input_dim": 6, "output_dim": 6, "activation": "relu"},

{"input_dim": 6, "output_dim": 4, "activation": "relu"},

{"input_dim": 4, "output_dim": 1, "activation": "sigmoid"},

]

Snippet 1.

从Snippet 1可看出,每一层输出神经元的维度等于下一层的输入维度。对权重矩阵W及偏置向量b进行初始化的代码如下:

def init_layers(nn_architecture, seed = 99):

np.random.seed(seed)

number_of_layers = len(nn_architecture)

params_values = {}

for idx, layer in enumerate(nn_architecture):

layer_idx = idx + 1

layer_input_size = layer["input_dim"]

layer_outp

好的,下面是一个简单的前馈神经网络实现,使用Python和NumPy库。 首先,我们需要导入NumPy库: ``` python import numpy as np ``` 接下来,我们定义一个前馈神经网络类: ``` python class NeuralNetwork: def __init__(self, layers): self.layers = layers self.weights = [np.random.randn(layers[i], layers[i+1]) for i in range(len(layers)-1)] self.biases = [np.random.randn(1, layers[i+1]) for i in range(len(layers)-1)] ``` 这个类包含了神经网络的层数和每一层的神经元数量,以及权重和偏置的初始化。权重和偏置是使用随机值初始化的,可以在训练过程中进行优化。 接下来,我们实现前向传播算法: ``` python def forward(self, X): a = X for w, b in zip(self.weights, self.biases): z = np.dot(a, w) + b a = sigmoid(z) return a ``` 这个函数接受输入数据 X 并计算输出。在计算输出时,我们使用了 Sigmoid 函数来激活神经元。Sigmoid 函数的定义如下: ``` python def sigmoid(z): return 1 / (1 + np.exp(-z)) ``` 最后,我们需要实现训练函数,这个函数使用反向传播算法来优化权重和偏置: ``` python def train(self, X, y, epochs, learning_rate): for i in range(epochs): # Forward propagation a = X activations = [a] zs = [] for w, b in zip(self.weights, self.biases): z = np.dot(a, w) + b zs.append(z) a = sigmoid(z) activations.append(a) # Backward propagation delta = (activations[-1] - y) * sigmoid_prime(zs[-1]) for l in range(2, len(self.layers)): delta = np.dot(delta, self.weights[-l+1].T) * sigmoid_prime(zs[-l]) delta_w = [np.dot(activations[i-1].T, delta) for i in range(len(self.layers)-1)] delta_b = [np.sum(delta, axis=0, keepdims=True) for delta in delta] self.weights = [w - learning_rate * dw for w, dw in zip(self.weights, delta_w)] self.biases = [b - learning_rate * db for b, db in zip(self.biases, delta_b)] ``` 这个函数接受输入数据 X 和对应的标签 y,以及训练的轮数 epochs 和学习率 learning_rate。在训练过程中,我们先执行前向传播算法,计算出所有层的输出。然后,我们使用反向传播算法来计算出每个权重和偏置的梯度,并使用梯度下降法来更新权重和偏置。 Sigmoid 函数的导数定义如下: ``` python def sigmoid_prime(z): return sigmoid(z) * (1 - sigmoid(z)) ``` 现在,我们就可以使用这个神经网络类来训练模型了。假设我们要训练一个有两个输入特征、一个隐藏层(包含两个神经元)和一个输出(二分类问题)的神经网络,我们可以这样做: ``` python X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]]) y = np.array([[0], [1], [1], [0]]) nn = NeuralNetwork([2, 2, 1]) nn.train(X, y, epochs=10000, learning_rate=0.1) y_pred = nn.forward(X) print(y_pred) ``` 在这个例子中,我们使用 XOR 问题进行训练。我们可以看到,神经网络可以正确地识别出每个输入的类别。 这就是使用Python和NumPy实现前馈神经网络的基本方法。当然,这只是一个简单的例子,实际的神经网络可能会更加复杂。但是,这个例子应该足以让你理解神经网络的基本原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值