设计一个三阶巴特沃斯滤波器_巴特沃斯低通滤波器设计分析.doc

本文详细介绍了巴特沃斯低通滤波器的设计原理,包括其幅度平方函数和极点分布。通过比较巴特沃斯滤波器与其他滤波器的特性,阐述了其在实际应用中的优势。文章还利用MATLAB进行了滤波器的仿真设计,给出了具体的MATLAB代码和仿真结果,展示了如何根据性能指标确定滤波器的阶数和截止频率。
摘要由CSDN通过智能技术生成

巴特沃斯低通滤波器设计分析

计算机科学与技术学院

数字信号处理课程作业

学 号:专 业学生姓名:教师:教授2015年月

图1巴特沃斯低通滤波器幅频特性

从表1可以看出,巴特沃斯滤波器在带通和过渡区域的线性相位、衰减斜率、加载特性以及跳跃反应方面具有特性均衡的优点。因此在实际使用中,巴特沃斯滤波器已被列为首选。

表1 巴特沃斯与贝塞尔、切比雪夫滤波器的特性差异比较

滤波器类型带通过渡区域阶跃响应巴特沃斯滤波器带通中最大的平坦幅度比贝塞尔滤波器陡峭,但不如切比雪夫滤波器性能好有一些过冲和振铃,但低于切比雪夫滤波器切比雪夫滤波器带通中的纹波比巴特沃斯滤波器和贝塞尔滤波器陡峭过冲和振铃合理贝塞尔滤波器带通中的平坦幅度响应比巴特沃斯滤波器和切比雪夫滤波器慢与巴特沃斯和切比雪夫滤波器相比,过冲和振铃非常小

3.3 巴特沃斯低通滤波器的设计原理

巴特沃斯低通滤波器的幅度平方函数,用下式表示:

N为滤波器的阶数。当Ω=0时,=1;Ω=时,=1/2,是3dB截止频率。Ω=时,Ω逐渐增大,幅度下降非常迅速。Ω和N同幅度特性关系图如图1所示。N决定了幅度下降速度,N越大,通带就越平坦,过渡带也随之变窄,阻带幅度同过渡带下降的速度越迅速,总体频响特性同理想低通滤波器的实际误差越小。

用S代替,把幅度平方函数变成S的函数:

,此公式说明了幅度平方函数有2N个极点,极点可以用下面的公式来表达:

2n个极点等间隔分布在半径为的圆上,间隔是rad。如图2所示。

图2 三阶

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值