dncnn图像去噪_ImageDenoise: 基于MATLAB实现传统图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM、三维块匹配滤波BM3D)和基于深度卷积神经网络的DnCNN图像去噪算法。...

1. 项目介绍

1.1 项目的背景

该项目是为了研究基于深度卷积神经网络的图像去噪算法,是利用DnCNN模型,但是为了比较该算法的效果,另外实现了四种传统的图像去噪算法(均值滤波、中值滤波、非局部均值滤波NLM和三维块匹配滤波BM3D)作为对照组。

1.2 噪声强度和类型

项目中实现五种算法对噪声强度为10,15,20...60,65,70的高斯白噪声进行处理。

1.3 评价指标

图像去噪后,如何评估算法去噪效果的好坏呢?项目中采用峰值信噪比PSNR和结构相似性SSIM作为评价指标。一般来说,PSNR越大,去噪效果越好。SSIM取值为0到1,越接近1,表示效果越好。

2. 数据集介绍

该项目中只是对Set12数据集进行处理,也就是项目中的Set12目录下的12张图片。如果觉得数据量不够充分,可以自行添加其他数据集,在代码中修改一下数据集的目录即可。

3. 代码介绍

对于均值滤波、中值滤波、和NLM,MATLAB都已经实现了,所以我们直接调用MATLAB自带的函数就可以。

BM3D和DnCNN的代码都是从别人那儿clone下来,做了一些小的修改。

五种算法都是对Set12数据集进行去噪,去噪的结果并没有保存,只是在运行过程中能看到去噪前和去噪后的图像对比,感兴趣的朋友可以自己将图像保存下来观察。

4. 代码运行

五种算法分别在五个不同的目录中,所以你只需要进行对应的目录,运行代码即可。

均值滤波、中值滤波、NLM算法对应的目录分别为avefilter、medainfilter、nlm-image-denoising。每个目录下只有一个.m文件,所以只需要运行对应的文件即可。

BM3D对应的目录是BM3D,运行该目录下的main.m程序即可。

DnCNN对应的目录是DnCNN,运行该目录下的Demo_test_DnCNN.m程序即可,该算法目录中对应的还有好几个代码,都是原项目中有的,我没有动过,感兴趣的朋友可以自己看看。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:数字20 设计师:CSDN官方博客 返回首页

打赏作者

weixin_39825045

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值