点击上方蓝字关注“公众号”
MATLAB 神经网络变量筛选—基于BP的神经网络变量筛选
灰色系统理论是一种研究少数据、贫信息、不确定性问题的新方法,它以部分信息已知,部分信息未知的“小样本”,“贫信息”不确定系统为研究对象,通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。
灰色理论强调通过对无规律的系统已知信息的研究,提炼和挖掘有价值的信息,进而用已知信息取揭示未知信息,使系统不断“白化”。
灰色系统中建立的模型称为灰色模型(Grey Model),简称GM模型,该模型是以原始数据序列为基础建立的微分方程。
灰色建模中最有代表性的模型是针对时间序列的GM建模,它直接将时间序列数据转化为微分方程,利用系统信息,使抽象的模型量化,进而在缺乏系统特性知识的情况下预测系统输出。
灰色神经网络预测流程包含灰色神经网络构建,灰色神经网络训练和灰色神经网络预测三个部分。
其中,灰色神经网络构建根据输入输出数据维数确定灰色神经网络结构。
由于本案例输入数据为5维,输出有1维,所以灰色神经网络结构为1-1-6-1,即LA层有1个节点,输入为时间序列t,LB层有1个节点,LC层有6个节点,从第2个到第6个分别输入市场份额、需求趋势、价格波动、订单满足率、分销商联合预测等5个因素的归一化数据,输出为预测订单量。
灰色神经网络训练用训练数据训练灰色神经网络,使网络具有订单预测能力。
灰色神经网络预测用网络预测订单数量,并根据预测误差判断网络性能。
共有过去3年36个月的数据,首先取前30个月的数据作为训练数据训练网络&