机器学习算法笔记-随机森林与集成算法

本文介绍了集成算法,特别是随机森林和梯度提升树(GBDT)。随机森林通过训练多个决策树并取平均来提高预测准确性,而GBDT则是通过连续训练弱学习器来逐渐减小误差。此外,还提到了Boosting模型如AdaBoost和Stacking,Stacking通过多模型的结果进行二次学习来提升性能。
摘要由CSDN通过智能技术生成

集成算法(E内设目标了learning)

目的:
让机器学习效果更好,类似集成电路。
集成学习
Bagging:训练多个模型取平均(各模型相互独立,并行)
Boosting:从弱学习期开始,通过加权来进行训练(隔膜型间存在关系,串行),随机森林就是一种Bagging
Stacking:聚合多个分类或回归模型

RF

随机森林:
每次从训练集中随机选择一定比例的数据,作为决策树的输入数据,因为输入数据不同,没课决策树的结果也不同,决策树之间相互独立,互不影响,随机森林的结果是所有决策树中出现次数最高的那个结果。
优势:
能够处理高维度的数据,并不用做特征选择;在训练完后,他能够给出哪些特征比较重要;容易做成并行方法,速度比较快;可视化强,容易理解
需要多少棵树
理论上树越多越好,但实际上基本超过一定数量就趋于稳定了。

梯度提升树(GBDT)

GBDT算法属于Boosting,举个例子,label1等于1000,第一棵树预测为950,第二棵树预测第一棵树的残差,label2等于50,它的预测是30

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值