基于python文本分类的研究_tensorflow学习教程之文本分类详析

前言

这几天caffe2发布了,支持移动端,我理解是类似单片机的物联网吧应该不是手机之类的,试想iphone7跑CNN,画面太美~

作为一个刚入坑的,甚至还没入坑的人,咱们还是老实研究下tensorflow吧,虽然它没有caffe好上手。tensorflow的特点我就不介绍了:

基于Python,写的很快并且具有可读性。

支持CPU和GPU,在多GPU系统上的运行更为顺畅。

代码编译效率较高。

社区发展的非常迅速并且活跃。

能够生成显示网络拓扑结构和性能的可视化图。

tensorflow(tf)运算流程:

tensorflow的运行流程主要有2步,分别是构造模型和训练。

在构造模型阶段,我们需要构建一个图(Graph)来描述我们的模型,tensoflow的强大之处也在这了,支持tensorboard:

就类似这样的图,有点像流程图,这里还推荐一个google的tensoflow游乐场,很有意思。

然后到了训练阶段,在构造模型阶段是不进行计算的,只有在tensoflow.Session.run()时会开始计算。

文本分类

先给出代码,然后我们在一一做解释

# -*- coding: utf-8 -*-

import pandas as pd

import numpy as np

import tensorflow as tf

from collections import Counter

from sklearn.datasets import fetch_20newsgroups

def get_word_2_index(vocab):

word2index = {}

for i,word in enumerate(vocab):

word2index[word] = i

return word2index

def get_batch(df,i,batch_size):

batches = []

results = []

texts = df.data[i*batch_size : i*batch_size+batch_size]

categories = df.target[i*batch_size : i*batch_size+batch_size]

for text in texts:

layer = np.zeros(total_words,dtype=float)

for word in text.split(' '):

layer[word2index[word.lower()]] += 1

batches.append(layer)

for category in categories:

y = np.zeros((3),dtype=float)

if category == 0:

y[0] = 1.

elif category == 1:

y[1] = 1.

else:

y[2] = 1.

results.append(y)

return np.array(batches),np.array(results)

def multilayer_perceptron(input_tensor, weights, biases):

#hidden层RELU函数激励

layer_1_multiplication = tf.matmul(input_tensor, weights['h1'])

layer_1_addition = tf.add(layer_1_multiplication, biases['b1'])

layer_1 = tf.nn.relu(layer_1_addition)

layer_2_multiplication = tf.matmul(layer_1, weights['h2'])

layer_2_addition = tf.add(layer_2_multiplication, biases['b2'])

layer_2 = tf.nn.relu(layer_2_addition)

# Output layer

out_layer_multiplication = tf.matmul(layer_2, weights['out'])

out_layer_addition = out_layer_multiplication + biases['out']

return out_layer_addition

#main

#从sklearn.datas获取数据

cate = ["comp.graphics","sci.space","rec.sport.baseball"]

newsgroups_train = fetch_20newsgroups(subset='train', categories=cate)

newsgroups_test = fetch_20newsgroups(subset='test', categories=cate)

# 计算训练和测试数据总数

vocab = Counter()

for text in newsgroups_train.data:

for word in text.split(' '):

vocab[word.lower()]+=1

for text in newsgroups_test.data:

for word in text.split(' '):

vocab[word.lower()]+=1

total_words = len(vocab)

word2index = get_word_2_index(vocab)

n_hidden_1 = 100 # 一层hidden层神经元个数

n_hidden_2 = 100 # 二层hidden层神经元个数

n_input = total_words

n_classes = 3 # graphics, sci.space and baseball 3层输出层即将文本分为三类

#占位

input_tensor = tf.placeholder(tf.float32,[None, n_input],name="input")

output_tensor = tf.placeholder(tf.float32,[None, n_classes],name="output")

#正态分布存储权值和偏差值

weights = {

'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

}

biases = {

'b1': tf.Variable(tf.random_normal([n_hidden_1])),

'b2': tf.Variable(tf.random_normal([n_hidden_2])),

'out': tf.Variable(tf.random_normal([n_classes]))

}

#初始化

prediction = multilayer_perceptron(input_tensor, weights, biases)

# 定义 loss and optimizer 采用softmax函数

# reduce_mean计算平均误差

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=output_tensor))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

#初始化所有变量

init = tf.global_variables_initializer()

#部署 graph

with tf.Session() as sess:

sess.run(init)

training_epochs = 100

display_step = 5

batch_size = 1000

# Training

for epoch in range(training_epochs):

avg_cost = 0.

total_batch = int(len(newsgroups_train.data) / batch_size)

for i in range(total_batch):

batch_x,batch_y = get_batch(newsgroups_train,i,batch_size)

c,_ = sess.run([loss,optimizer], feed_dict={input_tensor: batch_x,output_tensor:batch_y})

# 计算平均损失

avg_cost += c / total_batch

# 每5次epoch展示一次loss

if epoch % display_step == 0:

print("Epoch:", '%d' % (epoch+1), "loss=", "{:.6f}".format(avg_cost))

print("Finished!")

# Test model

correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(output_tensor, 1))

# 计算准确率

accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

total_test_data = len(newsgroups_test.target)

batch_x_test,batch_y_test = get_batch(newsgroups_test,0,total_test_data)

print("Accuracy:", accuracy.eval({input_tensor: batch_x_test, output_tensor: batch_y_test}))

代码解释

这里我们没有进行保存模型的操作。按代码流程,我解释下各种函数和选型,其实整个代码是github的已有的,我也是学习学习~

数据获取,我们从sklearn.datas获取数据,这里有个20种类的新闻文本,我们根据每个单词来做分类:

# 计算训练和测试数据总数

vocab = Counter()

for text in newsgroups_train.data:

for word in text.split(' '):

vocab[word.lower()]+=1

for text in newsgroups_test.data:

for word in text.split(' '):

vocab[word.lower()]+=1

total_words = len(vocab)

word2index = get_word_2_index(vocab)

根据每个index转为one_hot型编码,One-Hot编码,又称为一位有效编码,主要是采用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候只有一位有效。

def get_batch(df,i,batch_size):

batches = []

results = []

texts = df.data[i*batch_size : i*batch_size+batch_size]

categories = df.target[i*batch_size : i*batch_size+batch_size]

for text in texts:

layer = np.zeros(total_words,dtype=float)

for word in text.split(' '):

layer[word2index[word.lower()]] += 1

batches.append(layer)

for category in categories:

y = np.zeros((3),dtype=float)

if category == 0:

y[0] = 1.

elif category == 1:

y[1] = 1.

else:

y[2] = 1.

results.append(y)

return np.array(batches),np.array(results)

在这段代码中根据自定义的data的数据范围,即多少个数据进行一次训练,批处理。在测试模型时,我们将用更大的批处理来提供字典,这就是为什么需要定义一个可变的批处理维度。

构造神经网络

神经网络是一个计算模型(一种描述使用机器语言和数学概念的系统的方式)。这些系统是自主学习和被训练的,而不是明确编程的。下图是传统的三层神经网络:

而在这个神经网络中我们的hidden层拓展到两层,这两层是做的完全相同的事,只是hidden1层的输出是hidden2的输入。

weights = {

'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),

'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),

'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))

}

biases = {

'b1': tf.Variable(tf.random_normal([n_hidden_1])),

'b2': tf.Variable(tf.random_normal([n_hidden_2])),

'out': tf.Variable(tf.random_normal([n_classes]))

}

在输入层需要定义第一个隐藏层会有多少节点。这些节点也被称为特征或神经元,在上面的例子中我们用每一个圆圈表示一个节点。

输入层的每个节点都对应着数据集中的一个词(之后我们会看到这是怎么运行的)

每个节点(神经元)乘以一个权重。每个节点都有一个权重值,在训练阶段,神经网络会调整这些值以产生正确的输出。

将输入乘以权重并将值与偏差相加,有点像y = Wx + b 这种linear regression。这些数据也要通过激活函数传递。这个激活函数定义了每个节点的最终输出。有很多激活函数。

Rectified Linear Unit(RELU) - 用于隐层神经元输出

Sigmoid - 用于隐层神经元输出

Softmax - 用于多分类神经网络输出

Linear - 用于回归神经网络输出(或二分类问题)

这里我们的hidden层里面使用RELU,之前大多数是传统的sigmoid系来激活。

由图可知,导数从0开始很快就又趋近于0了,易造成“梯度消失”现象,而ReLU的导数就不存在这样的问题。 对比sigmoid类函数主要变化是:1)单侧抑制 2)相对宽阔的兴奋边界 3)稀疏激活性。这与人的神经皮层的工作原理接近。

为什么要加入偏移常量?

以sigmoid为例

权重w使得sigmoid函数可以调整其倾斜程度,下面这幅图是当权重变化时,sigmoid函数图形的变化情况:

可以看到无论W怎么变化,函数都要经过(0,0.5),但实际情况下,我们可能需要在x接近0时,函数结果为其他值。

当我们改变权重w和偏移量b时,可以为神经元构造多种输出可能性,这还仅仅是一个神经元,在神经网络中,千千万万个神经元结合就能产生复杂的输出模式。

输出层的值也要乘以权重,并我们也要加上误差,但是现在激活函数不一样。

你想用分类对每一个文本进行标记,并且这些分类相互独立(一个文本不能同时属于两个分类)。

考虑到这点,你将使用 Softmax 函数而不是 ReLu 激活函数。这个函数把每一个完整的输出转换成 0 和 1 之间的值,并且确保所有单元的和等于一。

在这个神经网络中,output层中明显是3个神经元,对应着三种分本分类。

#初始化所有变量

init = tf.global_variables_initializer()

#部署 graph

with tf.Session() as sess:

sess.run(init)

training_epochs = 100

display_step = 5

batch_size = 1000

# Training

for epoch in range(training_epochs):

avg_cost = 0.

total_batch = int(len(newsgroups_train.data) / batch_size)

for i in range(total_batch):

batch_x,batch_y = get_batch(newsgroups_train,i,batch_size)

c,_ = sess.run([loss,optimizer], feed_dict={input_tensor: batch_x,output_tensor:batch_y})

# 计算平均损失

avg_cost += c / total_batch

# 每5次epoch展示一次loss

if epoch % display_step == 0:

print("Epoch:", '%d' % (epoch+1), "loss=", "{:.6f}".format(avg_cost))

print("Finished!")

这里的 参数设置:

training_epochs = 100 #100次递归训练

display_step = 5 # 每5次print 一次当前的loss值

batch_size = 1000 #训练数据的分割

为了知道网络是否正在学习,需要比较一下输出值(Z)和期望值(expected)。我们要怎么计算这个的不同(损耗)呢?有很多方法去解决这个问题。

因为我们正在进行分类任务,测量损耗的最好的方式是 交叉熵误差。

通过 TensorFlow 你将使用tf.nn.softmax_cross_entropy_with_logits()方法计算交叉熵误差(这个是 softmax 激活函数)并计算平均误差 (tf.reduced_mean() ) 。

通过权重和误差的最佳值,以便最小化输出误差(实际得到的值和正确的值之间的区别)。要做到这一点,将需使用 梯度下降法。更具体些是,需要使用 随机梯度下降。

对应代码:

loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=output_tensor))

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(loss)

tensoflow已经将这些发杂的算法封装为函数,我们只需要选取特定的函数即可。

tf.train.AdamOptimizer(learning_rate).minimize(loss)方法是一个 语法糖,它做了两件事情:

compute_gradients(loss, ) 计算

apply_gradients() 展示

这个方法用新的值更新了所有的 tf.Variables ,因此我们不需要传递变量列表。

运行计算

Epoch: 0001 loss= 1133.908114347

Epoch: 0006 loss= 329.093700409

Epoch: 00011 loss= 111.876660109

Epoch: 00016 loss= 72.552971845

Epoch: 00021 loss= 16.673050320

........

Finished!

Accuracy: 0.81

Accuracy: 0.81 表示置信度在81%,我们通过调整参数和增加数据量(本文没做),置信度会产生变化。

结束

就是这样!使用神经网络创建了一个模型来将文本分类到不同的类别中。采用GPU或者采取分布式的TF可以提升训练速度和效率~

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对脚本之家的支持。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值