拉普拉斯(laplace)积分变换在工程、应用数学等方面都有重要的作用。用Matlab求解更加方便。
1、拉普拉斯(laplace)变换
语法:F= laplace(f,t,s) %求时域函数f(t)的laplace变换F
F是s的函数,参数s省略,返回结果F默认为’s’的函数;f为t的函数,当参数t省略,默认自由变量为’t’。
2、拉普拉斯(laplace)反变换
语法:F=i laplace(f,t,s) %求F的laplace反变换f
例1 求sin(at)和阶跃函数的laplace变换
解:>>syms a t s
>>F1=laplace(sin(a*t),t,s) %求sin(at)函数的laplace变换
F1=
a/(s^2+a^2)
F2=laplace(sym('heaviside(t)'))
%求阶跃函数的laplace变换(heaviside(t) 阶跃函数)
F2 =
1/s
例2 求1/(s+a)和1函数的laplace反变换
解:>>syms a t s
>>f1=ilaplace(1/(s+a),s,t) %求1/(s+a)函数的laplace反变换
f1 =
exp(-a*t)
>>f1=ilaplace(1,s,t) %求1函数的laplace反变换是脉冲函数dirac(t)
f1 =
dirac(t)
例3 控制系统的闭环传递函数为
求初始条件为零时系统的单位阶跃响应。
>>
cs=sym('4/(s^2+2*s+4)')*laplace(sym('Heaviside(t)'));
>> ft=ilaplace(cs)
ft =
1-exp(-t)*cos(3^(1/2)*t)-1/3*3^(1/2)*exp(-t)*sin(3^(1/2)*t)