有监督学习和无监督学习举例_超强半监督学习 MixMatch

ac0f1986482fa7de5edea6694895476e.png

人类的学习方法是半监督学习,他们能从大量的未标记数据和极少量的标记数据学习,迅速理解这个世界。半监督学习最近有没有什么大的突破呢?我的Twitter账号被这篇 《The Quiet Semi-Supervised Revolution》【1】博客刷屏了。这篇博客介绍了 DeepMind 的 MixMatch 【2】方法,此方法仅用少量的标记数据,就使半监督学习的预测精度逼近监督学习。深度学习领域的未来可能因此而刷新。

以前的半监督学习方案,一直以来表现其实都很差。你可能会想到 BERT 和 GPT,这两个超强的自然语言预训练模型。但这两个模型的微调只能算迁移学习,而非半监督学习。因为它们最开始训练的时候,使用了监督学习方法。比如通过语言模型,输入前言,预测后语;输入语境,完形填空;输入前言和后语,预测是否前言不搭后语。这几种方法,很难称作无监督学习。

下面这几种大家很容易想到的半监督学习方法,效果都不是很好。比如使用主成分分析PCA,提取数据中方差最大的特征,再在少量标记数据上,做监督学习;又比如使用自编码机 AutoEncoder,以重建输入图像的方式,获得数据潜在表示,对小数据监督学习;再比如使用生成对抗网络 GAN,以生成以假乱真图像的方式,获得数据潜在表示,对小数据做监督学习。半监督训练很久的精度,还比不上直接在小数据上做监督学习的精度!大家的猜测是,这些非监督方法学到的特征可能并不是分类器真正需要的特征。

什么才是半监督学习的正确打开方式呢?近期的一些半监督学习方法,通过在损失函数中添加与未标记数据相关的项,来鼓励模型举一反三,增加对陌生数据的泛化能力。

第一种方案是自洽正则化(Consistency Regularization)【3,4】。以前遇到标记数据太少,监督学习泛化能力差的时候,人们一般进行训练数据增广,比如对图像做随机平移,缩放,旋转,扭曲,剪切,改变亮度,饱和度,加噪声等。数据增广能产生无数的修改过的新图像,扩大训练数据集。自洽正则化的思路是,对未标记数据进行数据增广,产生的新数据输入分类器,预测结果应保持自洽。即同一个数据增广产生的样本,模型预测结果应保持一致。此规则被加入到损失函数中,有如下形式,

其中 x 是未标记数据,Augment(x) 表示对x做随机增广产生的新数据,

是模型参数,y 是模型预测结果。注意数据增广是随机操作,两个 Augment(x) 的输出不同。这个 L2 损失项,约束机器学习模型,对同一个图像做增广得到的所有新图像,作出自洽的预测。

MixMatch 集成了自洽正则化。数据增广使用了对图像的随机左右翻转和剪切(Crop)。

第二种方案称作 最小化熵(Entropy Minimization)【5】。许多半监督学习方法都基于一个共识,即分类器的分类边界不应该穿过边际分布的高密度区域。具体做法就是强迫分类器对未标记数据作出低熵预测。实现方法是在损失函数中简单的增加一项,最小化

对应的熵。

MixMatch 使用 "sharpening" 函数,最小化未标记数据的熵。这一部分后面会介绍。

第三种方案称作传统正则化(Traditional Regularization)。为了让模型泛化能力更好,一般的做法对模型参数做 L2 正则化,SGD下L2正则化等价于Weight Decay。MixMaxtch 使用了 Adam 优化器,而之前有篇文章发现 Adam 和 L2 正则化同时使用会有问题,因此 MixMatch 从谏如流使用了单独的Weight decay。

最近发明的一种数据增广方法叫 Mixup 【6】,从训练数据中任意抽样两个样本,构造混合样本和混合标签,作为新的增广数据,

其中

是一个 0 到 1 之间的正数,代表两个样本的混合比例。MixMatch 将 Mixup 同时用在了标记数据和未标记数据中。

MixMatch 方案

MixMatch 偷学各派武功,取三家之长,补三家之短,最终成为天下第

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值