监督学习(Supervised Learning) 原理与代码实例讲解

监督学习(Supervised Learning) - 原理与代码实例讲解

1. 背景介绍

监督学习是机器学习中最广为人知和应用最广泛的一种学习范式。它旨在从标记的训练数据中学习出一个函数,该函数可以将输入映射到期望的输出。监督学习算法通过分析大量带有正确答案的示例数据,学习到一个可以对新的输入数据做出预测的模型。

监督学习在现实生活中有着广泛的应用,如图像分类、语音识别、自然语言处理、推荐系统等。它的核心思想是利用已知的输入-输出对训练模型,使其能够对新的输入做出准确的输出预测。

graph TD
    A[监督学习] --> B[训练数据<br>带标签的输入-输出对]
    B --> C[学习算法]
    C --> D[预测模型]
    D --> E[对新输入进行预测]

2. 核心概念与联系

监督学习中有几个核心概念需要理解:

  1. 特征(Features):输入数据的属性,用于描述输入样本的特征。
  2. 标签(Labels):训练数据中每个样本对应的正确输出。
  3. 模型(Model):学习算法从训练数据中学习得到的函数映射。
  4. 损失函数(Loss Function):衡量模型预测输出与真实标签之间的差距
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值