python arima predict end无效_样本外预测的ARMA.predict不适用于浮点?

在使用Python的ARIMA模型进行样本外预测时,遇到预测失败的问题,错误提示为给定的日期不在日期索引中。文章详细描述了数据加载、预处理以及ARIMA模型的构建过程,并展示了模型参数的选择。作者尝试预测2014年的数据,但遇到了'predict'方法不接受浮点数日期的错误。文章探讨了解决这个问题的方法,寻求如何正确进行样本外预测的建议。
摘要由CSDN通过智能技术生成

在我开发了用于样本分析的小ARMAX预测模型之后,我想预测一些样本外的数据。

我用于预测计算的时间序列从2013-01-01开始,到2013-12-31结束!

以下是我正在处理的数据:hr = np.loadtxt("Data_2013_17.txt")

index = date_range(start='2013-1-1', end='2013-12-31', freq='D')

df = pd.DataFrame(hr, index=index)

holidays = ['2013-1-1', '2013-3-29', '2013-4-1', '2013-5-1', '2013-5-9', '2013-5-20', '2013-10-3', '2013-12-25', '2013-12-26']

# holidays for all Bundesländer

idx = df.asfreq('B').index - DatetimeIndex(holidays)

indexed_df = df.reindex(idx)

# indexed_df = df.asfreq('B') (includes holidays)

# 'D'=day

#'B'=business day

# W@MON=shows only mondays

# external variable

hr_ = np.loadtxt("Data_2_2013.txt")

index = date_range(start='2013-1-1', end='2013-12-31', freq='D')

df = pd.DataFrame(hr_, index=index)

idx2 = df.asfreq('B').index - DatetimeIndex(holidays)

external_df1 = df.reindex(idx2)

external_df = external_df1.fillna(external_df1.mean())

输出:0

2013-01-02 49.56

2013-01-03 48.09

2013-01-04 36.79

2013-01-07 60.84

2013-01-08 59.72

2013-01-09 61.88

2013-01-10 57.95

2013-01-11 56.29

2013-01-14 57.89

2013-01-15 64.49

2013-01-16 58.92

2013-01-17 62.30

2013-01-18 55.92

2013-01-21 55.67

2013-01-22 60.73

2013-01-23 60.12

2013-01-24 65.70

2013-01-25 55.15

2013-01-28 51.79

2013-01-29 39

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值