python中美元人汇率_Python爬虫练习:爬取美元历史汇率

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

以上文章来源于小鹏友的数据分析之路,作者 小鹏友

网址:https://chl.cn/?lishi

界面:

可以看出,网站上有2006至今的历史汇率数据。点击进“2020-9-30”入下个界面:

进入新的网页后,可以看到本人需要的爬取的数据:人民币兑美元汇率(其它汇率留给大家自主爬取)。

对比两个时间(2020-9-30和2020-9-29)的网页url,发现只有id不同,而且只差1,说明可以根据id号递增来循环爬取不同日期的汇率。

https://chl.cn/?id=7511 #2020-9-29https://chl.cn/?id=7512 #2020-9-30

接下来,解析人民币兑美元汇率(中间价)的源码:

第一,在chrome打开该网址,选择一个日期点击进入,然后按F12,鼠标点击右上角的箭头,再把箭头移动到需要爬取的汇率上,观察右边的源码,鼠标再次移动到对应的源码上,右键->edit as HTML,就可以看到具体的源码了。

第二,可以用re库,正则匹配出需要的内容:

https://chl.cn/?id=7511 #2020-9-29

https://chl.cn/?id=7512 #2020-9-30

上述代码匹配到的内容如下(以2020-9-30为例)。可以看出,美元汇率存放在list[0]中(其它部分汇率也可以匹配得到)。

用以下代码可以进一步匹配到2020-9-30的美元汇率6.8101

最后,就是实实在在地敲代码去爬了。如果爬取2016年至今每天的汇率数据,时间会有点久,所以本文就只爬取了2019年5月6日(即id=5001)至今的汇率数据,效果如下:

全部代码:

importpandas as pdimportnumpy as npimportrequestsimportreimporttimeimportdatetimedefCHNtime2strtime(CHNtime):'''功能:中文时间转字符串时间

传入:一个中文时间,如“2020年9月30号”

返回:字符串时间,如“2020-9-30”'''CHNtime_list= re.findall(r'[\u4e00-\u9fa5]+',CHNtime)for i inCHNtime_list:if i != '日':

CHNtime= CHNtime.replace(str(i),'-')else:

CHNtime= CHNtime.replace(str(i),'')returnCHNtimedefdiff_days(str_time):'''功能:计算过去某天时间与今天的天数差,比如“2020-9-29”距离今天(2020-9-30)相差1天

传入:一字符串时间,如“2020-9-30”

返回:天数差(数值型)'''date_time= datetime.datetime.strptime(str_time,'%Y-%m-%d')

now_time=datetime.datetime.now()

diff_time= now_time -date_time

days=diff_time.daysreturndays

t= [] #时间

dollar = [] #美元

i= 5000 #本文从id=5001(即2019-5-6)开始爬取

while True: #设置死循环

i+= 1 #循环一次,id+1

#请求头

headers ={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; \

Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36'}#网址

url = 'https://chl.cn/?id={}'.format(str(i))#请求响应

r = requests.get(url,headers=headers)

r.encoding= "utf-8"s=r.texttry: #设置抛出异常,因为有些id,如id=7001,网页就不存在

rate_list= re.findall(r'

(.*?)/人民币(.*?)',s)

tt= re.findall(r'

(.*?)汇率

',s)[0] #日期

strtime = CHNtime2strtime(tt) #中文时间转字符串时间

t.append(datetime.datetime.strptime(strtime,'%Y-%m-%d'))

dollar.append(rate_list[0][1]) #美元

days= diff_days(strtime) #计算天数差

print(tt,'爬取成功!')print('当天距离现在相差:',days,'天')if days == 0: #死循环终止条件:天数差为0时,即代表爬取到今天

break

except:#如果爬取的url不存在,那么时间与汇率就用控制代替

t.append(np.nan)

dollar.append(np.nan)print('id =',i,' ',np.nan)

time.sleep(0.2) #为了防止爬取的速度过快,设置睡眠时间为0.2s

df= pd.DataFrame() #生产一个DataFrame用来存放数据

df['time'] =t

df['人民币兑美元汇率'] =dollar

df.dropna(inplace=True) #将缺失值删去

df.to_excel('历史人民币兑美元汇率.xlsx',index=False) #在目前文件夹上生成excel文件

print('历史人民币兑美元汇率.xlsx 文件生成成功!')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值