已知长短轴求椭圆上任意一点的坐标_椭圆参数方程的深层应用

7c6c06aa4792cfbaeb72d19bd3276d6a.png

前言:这篇文章本来并不想写出来的,我一开始以为只是一个小小的发现或者奇技淫巧,其他人肯定已经发现了很多次了,但在google和百度搜索几天和向老师咨询之后发现并没有看到类似的方法被用来解题,也就是说(我所知道的)绝大部分人都不知道这个方法,所以我想把这个方法作为我知乎上的第一篇文章写下来,分享出去。

说明:为了简单明了,本文里在椭圆上的A点的坐标一律为

其他点同理。讨论直线的斜率的时候不考虑斜率不存在的情况,tanx不考虑x=π/2的情况,同时为了计算简便(懒),椭圆都是
,x轴上的一般点用(1,0)举例,其他点和椭圆可以自己用这个方法试试

一、

众所周知,椭圆的参数方程是

,这是一个很好的方法,对于一些“自由度”比较高的题目,比如求z=2x+3y的最大值,或者求k=y-3/x-4之类的题目才会用到,在一般的大题里面很少出现,我觉得它的潜力不止如此,研究了一段时间之后发现了以下几个结论:

结论一:对于在椭圆上的点A,B,直线AB的方程是

或者是

证明:设A(acosA,bsinA),B(acosB,bsinB)

带入

得证。

同时由上面的推导过程可以发现

结论二:

这个下文一般用第二种形式

再把y=0带入结论一得到

即结论三:

到此这就是全文的基础:<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
可以使用Matlab的`ellipse`函数进行绘制椭圆,然后根据椭圆参数计算出椭圆方程。假设椭圆的圆心坐标为$(x_0,y_0)$,长轴长度为$a$,短轴长度为$b$,倾角为$\theta$,则椭圆的标准方程可以表示为: $$\frac{(x-x_0)^2}{a^2}\cos^2\theta + \frac{(x-x_0)(y-y_0)}{ab}\sin 2\theta + \frac{(y-y_0)^2}{b^2}\sin^2\theta = 1$$ 如果需要将其转换为一般式,则可以进行如下步骤: 1. 将椭圆方程的 $\sin 2\theta$ 项变为 $2\sin\theta\cos\theta$。 2. 使用三角恒等式 $\sin^2\theta + \cos^2\theta = 1$,将 $\cos^2\theta$ 和 $\sin^2\theta$ 表示为 $k$ 和 $1-k$,则: $$\frac{(x-x_0)^2}{a^2}k + \frac{(x-x_0)(y-y_0)}{ab}\sin 2\theta + \frac{(y-y_0)^2}{b^2}(1-k) = 1$$ 3. 将 $k$ 和 $1-k$ 分别乘到 $x$ 和 $y$ 上,得到: $$(\frac{x-x_0}{a\sqrt{k}})^2 + 2\frac{(x-x_0)(y-y_0)}{ab}\frac{\sin\theta\cos\theta}{\sqrt{k(1-k)}} + (\frac{y-y_0}{b\sqrt{1-k}})^2 = 1$$ 4. 将 $\frac{\sin\theta\cos\theta}{\sqrt{k(1-k)}}$ 表示为 $\pm\frac{1}{2}\tan 2\theta$,则: $$(\frac{x-x_0}{a\sqrt{k}})^2 + (\frac{y-y_0}{b\sqrt{1-k}})^2 \pm \frac{(x-x_0)(y-y_0)}{ab}\tan 2\theta = 1$$ 因此,可以使用以下代码计算出椭圆方程: ```matlab % 椭圆参数 x0 = 0; % 圆心横坐标 y0 = 0; % 圆心纵坐标 a = 2; % 长轴长度 b = 1; % 短轴长度 theta = pi/4; % 倾角 % 计算椭圆方程 k = cos(theta)^2; eqn = @(x,y) ((x-x0).^2./(a^2*k) + (y-y0).^2./(b^2*(1-k)) ... + (x-x0).*(y-y0)./(a*b)*tan(2*theta)).^2 - 1; % 绘制椭圆 fimplicit(eqn,[-3,3,-2,2]) ``` 其,`fimplicit` 函数用于绘制椭圆,`eqn` 函数表示椭圆方程。在计算方程时,需要注意三角函数的输入是弧度制,所以需要将倾角转换为弧度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值