过椭圆外一点引两条切线方程_椭圆,恁么美的焦点弦。

c92d8403a7f9b25efe6a811c16acf7e0.gif


56cb5410b35d0521bc6f994d39b65e68.png

专题:椭圆焦点弦

解析几何,对于许多学生来说,可能是倍觉无奈的。

仅计算量的问题,就凸显了自己的不足吧。

而且因为对图形性质的认识不足,在做题时就会显得底气不足,会常常因为知识的储备问题,备觉捉襟见肘。

所以,解析几何,知识的整理是必要的。

那么今天,

就讲讲椭圆的焦点弦。

当然,

双曲线与抛物线的焦点弦,

就自行脑补了。

b1c6f68877df8030bbe1bfa6e29f69b8.png

b1c6f68877df8030bbe1bfa6e29f69b8.png

907fd710026bc3658ad1a8e9cc86e7f1.gif

【焦点弦】:

过椭圆、双曲线或抛物线焦点的弦

1

焦半径公式

① 直角坐标视角下的焦半径:


b8ed3cd47d50b4737e0ce01e90d4cc51.png

记住:和函数图像平移一样,左加右减哦。

② 极角坐标视角下的焦半径:


6660ff2a1a70bbdd5664338fd23c6de9.png

注意:左减右加,和上面的焦半径公式相哦!

③ 两种视角下的焦点弦长:

310ac72d50ce44b98c63e7c9ea59afd1.png

2

极坐标视角下几个结论

① 通径:

b8e7a3e424addc5d932b2a41081779c1.png

两个简单性质:

①AM与椭圆相切      ② kBM=ekAM=-e

3174f4eab77f786a811b6fb5d82b8199.gif


② 焦半径倒数和:

765c2192acfd1be9ad314a83e92d28ea.png

fea5539ed6500c5abe0b20a19e079b85.png


③ 焦定比结论:

焦点分焦点弦的比值问题,称为焦定比问题,利用椭圆第二定义或极坐标方程,可以获知焦定比下的一组重要结论。

7b43070eda8090d011c822c7d9211530.png

bfa801dc5d253b19d4f9ed66e0722b7c.png

3

焦点弦与切线

7be9c4a61d36097308d45b0ca0357c9d.gif

从上面的图像中,最少可以看出三个结论:

■过焦点弦的两端点分别作椭圆切线,

  切线交点在准线上。

■过椭圆准线上任一点作椭圆两切线,

  切点的连线过定点。

■垂直关系:PF1〦AB。

定点、定线的证明:

e00dd8dde8ed618748caeadb2a9ab7ea.png

a3afde3cb23d30a902b6b6a720ddee3c.png 382091911aef9b47c79fc2a7cd8aff02.png

从上面的证明过程,

我们还可以得出一个重要的切点弦方程哦:

9c260b14250188e3f068f593bf14b6a4.png

其实,根据切点弦方程,我们还可以大胆猜测:

只要动点P在一定直线上,

则切点弦所在直线一定过定点。

(观看视频验证结论)

13f545594d585d11a7a22ae6da98871d.png

点P和切点弦AB

就是传说中的极点和极线

有兴趣的你

是不是可以自己给自己编个题

来玩玩这个性质呢

24b5c54f35ba13df4dc195f86f2661f3.png 88cc35cb898b66cbc4f140e0ced94c0c.png 08b15c19f8ca8bb0404b70658b498cd7.gif

垂直关系的证明可以这样:

7f223f3e66942b3d7b59a405ae8c956a.png

e2e671233bbb67131fc17558fd654159.gif

圆锥曲线中的结论有许多,今天主要就焦点弦相关的几个常见结论做了部分讲解。

其实我认为,对类似这些结论做些研究,不仅便于我们加强对圆锥曲线性质的认识和理解,而且一些结论的证明过程,也包含了解析几何问题处理的常规思路,会让我们以后的解题更加理性和清晰。

当然,双曲线和抛物线中,相应的图形性质有很多是相似的,也需要我们去多比较、多总结,以提高我们解决解析几何问题的整体能力。

END

7ab961d643d3f504d01f182b19e544f8.png

解析几何精彩链接:

1.圆锥曲线引入课视频素材

2.课堂记录|椭圆及其标准方程(第一课时)

3.原来这才是真正的切割线定理

4.圆来如此,阿氏圆的深度学习。

5.双斜率问题 | 齐次化处理

6.圆锥曲线的切线,这两招一定要搞清楚!

7.椭圆,恁么美的焦点弦。

8.筷子夹汤圆,夹出个美丽的蒙日圆

9.椭圆与圆:本同源,应相伴。

10.抛物线专题:一弦三点,就够啦。

11.从高考题圆锥曲线看“特征点”

### 使用 MATLAB 实现计算两焦点位于 X 轴相离椭圆切线方程切点坐标 为了实现这一目标,可以按照如下方法构建算法并编写相应的MATLAB代码: #### 定义椭圆参数 对于两个焦点均在X轴上的标准位置椭圆,其一般形式可由给定的半长轴 \(a\)、半短轴 \(b\) 及中心坐标 \((x_0, y_0)\) 来描述。当考虑旋转角度时,则需要额指定长轴相对于X轴的角度 \(\theta\)[^1]。 #### 构建椭圆方程 基于上述参数,可以通过转换矩阵将原始未旋转变换后的单位圆映射到所需的位置与方向上形成最终的目标椭圆。具体来说就是利用仿射变换中的平移和平面内绕原点的旋转操作完成此过程。 #### 寻找公共切线 针对已知条件下的两个不交叠椭圆寻找它们之间的共有的切线条数最多有四条;内部则不存在共同内接情况因为这里假设的是完全分离状态。要找到这些直线,一种有效的方法是从几何意义上理解——即每一对这样的线都对应着某一点两条不同曲面上具有相同斜率的方向向量。因此,可通过解联立方程式组的方式获取满足特定关系式的接触点集合从而进一步导出对应的切线表达式。 下面给出一段用于解决该问题的核心部分伪代码以及完整的matlab脚本实例: ```matlab function [tangent_lines, tangent_points] = findCommonTangents(ellipse1, ellipse2) % 输入为结构体数组包含各椭圆属性 {a,b,x0,y0,theta} % ... (此处省略初始化和其他辅助函数) syms m c real; % 斜率m和截距c作为未知变量 eqns = []; for i=1:length(tangent_types) type = tangent_types{i}; switch(type) case 'external' % 对于每一个可能类型的切线建立相应约束条件... otherwise error('Unsupported tangent line type'); end append(eqns, solve(constraints)); % 解决当前设定下形成的非线性方程组 end solutions = unique([eqns{:}]); % 移除重复解 tangents = cell(size(solutions)); points = zeros(length(solutions), 4); % 存储四个触碰点(x1,y1,x2,y2) for k=1:numel(solutions) sol = double(subs({m,c}, solutions(k))); tangents{k} = composeLineEquation(sol); points(k,:) = computeContactPoints(sol, ellipse1, ellipse2); end varargout{1}=cellfun(@(line)char(line), tangents,'UniformOutput',false)'; varargout{2}=points; end % 主程序调用入口 ellipses = struct('a',[...],'b',[...], ... 'x0',[...],'y0',[...], 'theta',[...] ); % 用户自定义输入数据集 [tanLines tanPts]=findCommonTangents(ellipses(1,:), ellipses(2,:)); disp('The equations of common external tangents:'); celldisp(tanLines); fprintf('\nCoordinates of contact points:\n'); disp(tanPts); ``` 这段代码展示了如何设置一个通用框架去处理任意给定条件下两个独立分布的标准位姿椭圆形物体间存在的所有潜在连接方式之一 —— 部公切现象,并返回具体的解析表示及其关联的实际交汇节点信息。注意实际应用中还需要补充更多细节比如异常检测机制等以确保鲁棒性和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值