
1-of-N encoding (one hot)
--> word embedding
count based: 基于词共现 如glove vector
prediction based:
training, 预测下一个词汇。用于language modeling,预测一个句子出现的几率。
取出第一层参数 可作为词向量 不用deep原因 是不需要 不用还可以很快
CBOW 和 skip-gram
multi-lingual embedding
document embedding
semantic embedding
Beyond bag of word the order of the words cannot be ignored
本文探讨了词向量的生成方法,包括one-hot编码、word embedding、基于词共现的GloVe向量及预测型模型。讨论了CBOW、skip-gram等算法,并延伸到多语言、文档及语义嵌入,强调了超越词袋模型的重要性。
5443

被折叠的 条评论
为什么被折叠?



