k-means算法是非监督聚类最常用的一种方法,因其算法简单和很好的适用于大样本数据,广泛应用于不同领域,本文详细总结了k-means聚类算法原理 。
目录
1. k-means聚类算法原理
2. k-means聚类算法步骤
3. k-means++聚类优化算法
4. 小批量处理的k-means聚类算法
5. k值的选取
6. k-means聚类算法不适用的几个场景
7. k-means与knn区别
8. 小结
1. k-means聚类算法原理聚类算法性能度量的文章提到若簇类相似度好簇间的相似度差,则聚类算法的性能较好。我们基于此定义k-means聚类算法的目标函数:
其中表示当样本划分为簇类k时为1,否则为0。
表示簇类k的均值向量。
目标函数(1.1)在一定程度上刻画了簇内样本围绕簇均值向量的紧密程度,J值越小则簇内样本相似度越高。最小化目标函数是一个NP难题,k-means聚类运用EM算法思想实现模型的最优化。
1)初始化K个簇的均值向量,即是常数,求J最小化时的。我们不难知道当数据点划分到离该数据点最近的簇类时,目标函数J取最小。
2)已知,求最小化J时相应的。令目标函数J对的偏导数等于0:
得:
表达式的含义是簇类中心等于所属簇类样本的均值。
本节用EM算法思想解释了k-means聚类算法的参数更新过程,相信大家对k-means聚类算法有一个更清晰的认识。
2. k-means聚类算法步骤k-means聚类算法步骤实质是EM算法的模型优化过程,具体步骤如下:
1)随机选择k个样本作为初始簇类的均值向量;
2)将每个样本数据集划分离它距离最近的簇;
3)根据每个样本所属的簇,更新簇类的均值向量;
4)重复(2)(3)步,当达到设置的迭代次数或簇类的均值向量不再改变时,模型构建完成,输出聚类算法结果。
3. k-means++聚类优化算法若给定足够的迭代次数,k-means算法就能收敛,但是有可能在局部最小值点收敛。k-means收敛局部极值的原因很可能是初始化簇类中心的距离很接近,而且算法的收敛时间也加长了,为了避免这一情况,多次运行k-means聚类算法,每次运行初始化不同的簇类中心。
另一种解决k-means收敛局部极值的方法是k++聚类算法,k-means++通过让簇间中心互相远离的方案来初始化簇类中心。
具体算法步骤:
1)随机选择一个样本数据作为第一个簇类中心;
2)计算每一个样本到簇类中心的最小距离;
3)选择最大距离的样本点作为簇类中心;
4)重复(2)(3),直到达到簇类个数k;
5)利用这k个簇类中心作为初始化的簇类中心运行k-means算法;
4. 小批量处理的k-means聚类算法k-means聚类算法的时间复杂度随着样本数的增加而增大,若样本量达到上万时,k-means聚类算法非常耗时,因此对该数据集进行无放回随机抽样得到合适的小批量样本数据集,sklearn.cluster包提供了相应的实现方法MiniBatchKMeans。
小批量处理的k-means聚类算法在减少了收敛时间的同时,算法结果相差不大。如下结果用inertia评价k-means和MiniBatchKmeans的算法结果。
import timeimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import MiniBatchKMeans, KMeansfrom sklearn.metrics.pairwise import pairwise_distances_argminfrom sklearn.datasets.samples_generator import make_blobs# Generate sample datanp.random.seed(0)# minibatch随机抽样100例样本进行训练batch_size = 100centers = [[1, 1], [-1, -1], [1, -1]]n_clusters = len(centers)# 产生3个簇类的30000个样本数据X, labels_true = make_blobs(n_samples=30000, centers=centers, cluster_std=0.7)# k-means++算法k_means = KMeans(init='k-means++', n_clusters=3, n_init=10)t0 = time.time()k_means.fit(X)
t_batch = time.time() - t0
# MiniBatchKMeans算法mbk = MiniBatchKMeans(init='k-means++', n_clusters=3, batch_size=batch_size,n_init=10, max_no_improvement=10, verbose=0)t0 = time.time()mbk.fit(X)t_mini_batch = time.time() - t0# 打印k-means++运行时间和性能度量print("k-means++_runtime= ",t_batch)print("k_means++_metics= ",k_means.inertia_)# 打印minibatch_k_means++运行时间和性能度量值print("MiniBatch_k_means++_runtime= ",t_mini_batch)print("k_means_metics= ",mbk.inertia_)#>k-means++_runtime= 0.36002039909362793k_means++_metics= 25164.97821695812MiniBatch_k_means++_runtime= 0.15800929069519043k_means_metics= 25178.611517320118
图形结果表示:
5. 簇类个数k的选取我们运用Calinski-Harabasz分数作为评价聚类性能的标准,分数越大,聚类性能越好,Calinski-Harabasz的含义请参考该文,
我们首先构建四个不同标准差的二维样本数据:
from sklearn import metrics# 定义四个簇类中心centers1 = [[0,0],[1, 1],[1.9, 2],[3, 3]]# 定义每个簇类的标准差std1 = [0.19,0.2,0.3,0.4]# 算法可重复性seed1 =45# 产生4个簇类的30000个样本数据X, labels_true = make_blobs(n_samples=30000, centers=centers1, cluster_std=std1,random_state=seed1)plt.scatter(X[:,0],X[:,1],marker='o')plt.show()
数据散点图如下:
首先选择簇类个数为2,即K=2,查看聚类效果图和Calinski-Harabasz分数。
# 若我们选择k=2k_means = KMeans(init='k-means++', n_clusters=2, n_init=10,random_state=10)y_pred = k_means.fit_predict(X)plt.scatter(X[:, 0], X[:, 1], c=y_pred)plt.show()scores2 = metrics.calinski_harabaz_score(X,y_pred)print("the Calinski-Harabasz scores(k=2) is: ",scores2)
散点图效果:
Calinski-Harabasz分数:
#> the Calinski-Harabasz scores(k=2) is: 85059.39875951338
选择簇类个数为3,即K=3,查看聚类效果图和Calinski-Harabasz分数。
散点图效果:
Calinski-Harabasz分数:
#> the Calinski-Harabasz scores(k=3) is: 92778.08155077342
选择簇类个数为4,即K=4,查看聚类效果图和Calinski-Harabasz分数。
散点图效果:
Calinski-Harabasz分数:
#> the Calinski-Harabasz scores(k=4) is: 158961.98176157777
有结果可知:k=4时的Calinski-Harabasz分数最高,因此选择簇类个数为4 。
6. k-means聚类算法不适用的几个场景k_means算法假设数据是各向同性的,即不同簇类的协方差是相等的,通俗讲就是样本数据落在各个方向的概率是相等的。
1)若样本数据是各向异性的,那么k-means算法的效果较差。
生成一组各向异性的样本数据:
import numpy as npimport matplotlib.pyplot as pltfrom sklearn.cluster import KMeansfrom sklearn.datasets import make_blobsplt.figure(figsize=(6, 6))n_samples = 1500random_state = 170X, y = make_blobs(n_samples=n_samples, random_state=random_state)# 生成各项异性的数据transformation = [[0.60834549, -0.63667341], [-0.40887718, 0.85253229]]X_aniso = np.dot(X, transformation)plt.scatter(X_aniso[:, 0], X_aniso[:, 1], marker='.')plt.title("Anisotropicly Distributed Blobs")plt.show()
生成样本数据的散点图效果:
根据散点图分布,我们用簇类数k=3训练样本数据:
# k =3训练数据,输出散点效果图y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_aniso)plt.scatter(X_aniso[:, 0], X_aniso[:, 1], marker='.',c=y_pred)plt.title("clustering scatter distributed k=3")plt.show()
聚类效果图:
由上图可知聚类效果很差。
2)当样本数据集是非凸数据集时,k-means聚类效果较差:
首先生成非凸数据集:
# 非凸数据集plt.figure(figsize=[6,6])from sklearn import cluster,datasetsn_samples = 1500noisy_circles = datasets.make_circles(n_samples=n_samples, factor=.5, noise=.05)plt.scatter(noisy_circles[0][:,0],noisy_circles[0][:,1],marker='.')plt.title("non-convex datasets")plt.show()
散点图效果:
根据散点图分布,我们用簇类数k=2训练样本数据:
# k=2训练数据y_pred = KMeans(n_clusters=2, random_state=random_state).fit_predict(noisy_circles[0])plt.scatter(noisy_circles[0][:, 0], noisy_circles[0][:, 1], marker='.',c=y_pred)plt.title("non-convex k-means clustering")plt.show()
散点图聚类效果:
由上图可知聚类效果很差。
3)当训练数据集各个簇类的标准差不相等时,k-means聚类效果不好。
# 构建不同方差的各簇类数据,标准差分别为1.0,2.5,0.5X_varied, y_varied = make_blobs(n_samples=n_samples,cluster_std=[1.0, 2.5, 0.5],random_state=random_state)y_pred = KMeans(n_clusters=3, random_state=random_state).fit_predict(X_varied)plt.scatter(X_varied[:, 0], X_varied[:, 1], c=y_pred)plt.title("Unequal Variance")plt.show()
由下图可知聚类效果不好:
4)若各簇类的样本数相差比较大,聚类性能较差。
产生三个样本数分别为500,10,10的簇类:
n_samples = 1500random_state = 170# 产生三个簇类,每个簇类样本数是500X, y = make_blobs(n_samples=n_samples, random_state=random_state)# 三个簇类的样本数分别为500,100,10,查看聚类效果X_filtered = np.vstack((X[y == 0][:500], X[y == 1][:100], X[y == 2][:5]))plt.scatter(X_filtered[:, 0], X_filtered[:, 1], marker='.')plt.title("Unequal Variance")plt.show()
散点图分布:
运用k-means对其聚类:
y_pred = KMeans(n_clusters=3,random_state=random_state).fit_predict(X_filtered)plt.scatter(X_filtered[:, 0], X_filtered[:, 1], c=y_pred,marker='.')plt.title("Unevenly Sized Blobs")plt.show()
效果图如下:
5) 若数据维度很大时,运行时间很长,可以考虑先用pca降维。
# 产生100维的15000个样本n_samples = 15000random_state = 170plt.figure(figsize=[10,6])t0=time.time()# 产生三个簇类,每个簇类样本数是500X, y = make_blobs(n_samples=n_samples, n_features=100,random_state=random_state)y_pred = KMeans(n_clusters=3,random_state=random_state).fit_predict(X)t1 =time.time()-t0scores1 = metrics.calinski_harabaz_score(X,y)print("no feature dimonsion reduction scores = ",scores1)print("no feature dimonsion reduction runtime = ",t1)
输出聚类效果和运行时间:
no feature dimonsion reduction scores = 164709.2183791984no feature dimonsion reduction runtime = 0.5700197219848633
数据先进行PCA降维再用k-means聚类,
# 数据先pca降维,再k-means聚类from sklearn.decomposition import PCApca = PCA(n_components=0.8)s=pca.fit_transform(X)t0=time.time()y_pred = KMeans(n_clusters=3,random_state=random_state).fit_predict(s)t1 =time.time()-t0print("feature dimonsion reduction scores = ",scores1)print("feature dimonsion reduction runtime = ",t1)
输出聚类效果和运行时间:
feature dimonsion reduction scores = 164709.2183791984feature dimonsion reduction runtime = 0.0630037784576416
由结果对比可知,聚类效果相差无几的情况下,运行时间大大降低了。
7. k-means与knn的区别k-means是最简单的非监督分类算法,knn是最简单的监督分类算法,初学者学完监督学习章节再去学非监督章节会感觉似曾相识,原因可能都是用距离作为评价样本间的相似度。下面列举几个区别的地方:
1)knn是监督学习方法,k-means是非监督学习方法,因此knn需要样本的标记类,k-means不需要;
2)knn不需要训练,只要找到距离测试样本最近的k个样本,根据k个样本的类别给出分类结果;k-means需要训练,训练的目的是得到每个簇类的均值向量(质心),根据质心给出测试数据的分类结果;
8. 小结k-means算法简单且在一些大样本数据表现较好而得到广泛的应用,本文也列举了k-means不适用的几个场景,其他聚类算法可能很好的解决k-means所不能解决的场景,不同的聚类算法有不同的优缺点,后续文章会持续介绍聚类算法,希望这篇k-means总结文章能帮到您。
参考
https://scikit-learn.org/stable/modules/clustering.html#clustering
https://www.cnblogs.com/pinard/p/6169370.html
推荐阅读