python中tensorflow实现二分类_Tensorflow实现CNN文本分类

本文介绍了如何使用Tensorflow实现CNN进行文本分类。首先讲解了CNN的卷积层和池化层的工作原理,然后简述了Tensorflow在深度学习领域的应用。接着提到了Word2Vec在NLP中的作用,最后详细阐述了如何构建和训练一个CNN模型进行文本分类,包括数据预处理、网络模型构建以及训练过程中的损失计算和优化方法。
摘要由CSDN通过智能技术生成

摘要:本文主要是用于学习。从实践中出发,利用TensorFlow解决NLP中的分类问题,主要包括多分类、多标签分类问题。我打算学习深度学习中的不同算法进行探讨研究,主要包括CNN、LSTM、Fasttext、seq2seq等一系列算法,在实际应用中的一些问题及track。这是本系列的第一篇文章,主要介绍了CNN卷积神经网络的原理,以及使用Tensorflow实现CNN文本分类的编码实现。

CNN卷积神经网络简介

神经网络Neural Networks方面的研究在国外是从很早很早就已经开始发展了,从最开始的浅层神经网络ANN算法研究,到BP反馈神经网络的发展,以及现在非常火的深度学习神经网络。都是想要对单个神经元进行建模,模拟人脑神经网络系统的功能,从而构建一个网络,具有学习的能力。BP神经网络,深度学习神经网络都是遵循一个最基本的特点:前向传播数据信号,反向传播误差值。从而让神经网络学习拟合到一个较好的状态。

卷积层

对于卷积层,其中核心即是通过卷积核(filter)计算提取特征feature map。对于卷积操作而言,通过每一个filter和input卷积计算,则会得到一个新的二维数组,可以理解为对原始输入进行特征提取,一般表示为feature map,filter的个数影响feature map的数量,卷积层的输出维度则和卷积核以及输入相关,一般计算卷积输出有公式如下,其中W:输入;F:卷积核;P:0填充;S:步长。

ff8e5f4635cc

feature map 长度计算公式

在整个计算卷积计算的过程中,主要有两个重要的特性:1.局部连通 2.参数共享

1. 局部连通:CNN和全连接神经网络不一样的地方在于,CNN的神经元和下一层的神经元并不是全连接的,而是通过不同的卷积核(filter),针对样本某一局部的数据窗口进行卷积计算,卷积核就好比学习对象,不同的卷积核对同样的输入样本进行学习、特征提取,最好的即是每一个卷积核都提取到样本不同的特征,比如对于图片而言,不同的filter可能提取图片的颜色深浅,轮廓等特征,每个filter都是对输入数据的局部进行计算处理,这就是CNN的局部连通特点。

2. 参数共享:对于同一个filter而言,可以当成是提取特征的容器,用相同的filter提取特征,而与样本的输入位置无关,表示在输入样本的所有区域,都能够使用相同的学习特征,虽然样本局部的数据在变化,可是每一个filter的权重是固定不变的,这个即是CNN的参数共享特点,它降低了整个网络的复杂性。

池化层

在CNN网络中另外一个非常重要的操作则是池化操作,池化可以将一幅大的图像缩小,同时又保留其中的重要信息。 它就是将输入图像进行缩小,减少像素信息,只保留重要信息。通常情况下,池化都是22大小,比如对于max-pooling来说,就是取输入图像中22大小的块中最大值,作为结果的像素值,相当于将原始图像缩小了4倍。(注:同理,对于average-pooling来说,就是取2*2大小块的平均值作为结果的像素值。)因为最大池化(max-pooling)保留了每一个小块内的最大值,所以它相当于保留了这一块最佳的匹配结果(因为值越接近1表示匹配越好)。这也就意味着它不会具体关注窗口内到底是哪一个地方匹配了,

Tensorflow简介

对于Tensorflow,我想现在大部分的研究人员都不陌生,可是为什么Tensorflow在整个深度学习领域会变得如此的流行?毫无疑问的是,因为Tensorflow的流行让深度学习的门槛变得越来越低了,只要有python和机器学习基础,使得实现以及应用神经网络模型变得非常简单易上手。以前要编码实现一个神经网络,需要对前馈传播,反向传播有很深刻的理解,并需要花费一定的时间进行编码开发,所以Tensorflow的出现,大大降低了深度神经网络的开发成本和开发难度,使得算法研究人员能够快速验证算法的适用性,能够将更多的精力放到网

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个使用TensorFlow实现CNN进行文本二分类Python代码示例,其包括了一个简单的数据示例: ```python import tensorflow as tf # 定义超参数 embedding_size = 50 filter_sizes = [3, 4, 5] num_filters = 128 dropout_keep_prob = 0.5 l2_reg_lambda = 0.0 learning_rate = 1e-3 # 定义输入数据 input_x = tf.placeholder(tf.float32, [None, sequence_length, embedding_size], name="input_x") input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") # 定义卷积层 pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # 卷积层 filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d( input_x_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # 非线性激活函数 h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # 最大池化层 pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # 合并所有池化层的输出 num_filters_total = num_filters * len(filter_sizes) h_pool = tf.concat(pooled_outputs, 3) h_pool_flat = tf.reshape(h_pool, [-1, num_filters_total]) # Dropout层 with tf.name_scope("dropout"): h_drop = tf.nn.dropout(h_pool_flat, dropout_keep_prob) # 全连接层 with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") scores = tf.nn.xw_plus_b(h_drop, W, b, name="scores") predictions = tf.argmax(scores, 1, name="predictions") # 定义损失函数 with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=scores, labels=input_y) l2_loss = tf.contrib.layers.apply_regularization(tf.contrib.layers.l2_regularizer(l2_reg_lambda), tf.trainable_variables()) loss = tf.reduce_mean(losses + l2_loss) # 定义优化器 with tf.name_scope("optimizer"): optimizer = tf.train.AdamOptimizer(learning_rate) grads_and_vars = optimizer.compute_gradients(loss) train_op = optimizer.apply_gradients(grads_and_vars) # 训练模型 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # 示例数据 x_train = [ [0.2, 0.4, 0.6, 0.8, 0.3, 0.1, 0.9, 0.5, 0.7, 0.2], [0.3, 0.6, 0.9, 0.2, 0.5, 0.8, 0.1, 0.7, 0.4, 0.2] ] y_train = [ [0, 1], [1, 0] ] # 训练模型 for i in range(1000): _, loss_val = sess.run([train_op, loss], feed_dict={input_x: x_train, input_y: y_train, dropout_keep_prob: 0.5}) if i % 100 == 0: print("Step %d, Loss: %f" % (i, loss_val)) ``` 上面代码的示例数据包括两个输入样本,每个样本由10个特征值组成,标签是一个二分类标签。在实际应用,应该使用更大的数据集进行训练。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值