泊松分布的分布函数_《可靠性设计》——常用的概率分布

超几何分布:

总数为N、不合格品率为p的一批产品中随机抽取n个样品,且样品中r个不合格品的概率为

e20efafb96b9487c0156d070f8025364.png

则称x服从超几何分布。 当N很大时,上式计算相当烦琐,此时可以用二项分布或泊松分布来近似。

二项分布:

二项分布又称为Bernoulli(伯努利)分布。设试验只有两种结果,例如“失败”或“成功”等。两种相反的结果用A、B表示,且记P{A}=p, P{B}=1-p=q(0<p<1), 若将试验独立地重复n次,则称这样的独立试验为n重Bernoulli试验,简称Bernoulli试验。

70f0e4676714b17ad2816036147a0073.png

泊松分布:

泊松分布是二项式分布的特殊情况,当实验次数足够大时

ac7b417f782c3a8e4e6377e17734fc35.png

则称随机变量X服从泊松分布,λ(λ>0)为泊松分布的参数。泊松分布的均值和方差分别为E[X]= λ D[X]= λ。

χ2分布(卡方分布)

设有n个相互独立的随机变量X1、X2、…、Xn,它们都服从标准正态分布N(0,1)。若

9195f2a5df3ede2a4c63444e1fdfd64f.png

则 χ 2 服从自由度为 n 的χ2分布,记为χ2~χ2(n)。χ2分布的概率密度函数为

c3cad25dcdaa632b8e922ccdf45fbc0e.png

χ2分布的数学期望和方差分别为E[χ2 ]=n 和D[χ2 ]=2n。

分位数

29055db133a9996c2b1d305db73ad9fc.png

卡方分布的运用:

1,指数分布函数的参数区间估计

为了求得指数分布参数λ(失效率)的区间估计,即为求得两个统计量λL和λU,使得

946498e17a1d90e9b2dfff54f5b96a0b.png

其中α为置信水平,1-α为置信度,[λL,λU]为置信区间。

估计方案:参与试验的产品总数为N,定数失效产品数目为n,失效产品没有更换。总的试验时间为Tn=t1+t2+…+t n+(N-n)t n ,其中ti为第i个产品失效的时间。显然,2λTn~χ2(2n)根据卡方分布表找出分位数χ2α/2和χ21 -α/2。使得

632e5b7c5ceab125761db93f6b6dbdda.png

因此,失效率的区间估计为

60123606d473d99b97d1e5988dedba4c.png

2,正态分布函数的方差区间估计。

c3448eefa05317337cf7feb3fb6bb8e5.png

t分布

若总体X~N(0,1),Y~χ2(n),且X与Y相互独立,则称统计量t=X/

服从自由度为n的t分布,记为t~t(n) 。

用t分布求数学期望(均值)区间估计。见

十楹棈:《概率论与数理统计》——大致回顾​zhuanlan.zhihu.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值