卡方分布上侧α分位数的近似公式及其证明

命题: 当 n > 45 n>45 n>45 时有 χ α 2 ( n ) ≈ 1 2 ( u α + 2 n − 1 ) 2 \chi^2_{\alpha}(n)\approx \frac 12(u_\alpha+\sqrt{2n-1})^2 χα2(n)21(uα+2n1 )2, 其中 χ α 2 ( n ) \chi^2_\alpha(n) χα2(n) u α u_\alpha uα 分别为 χ 2 ( n ) \chi^2(n) χ2(n) N ( 0 , 1 ) N(0,1) N(0,1) 的上侧 α \alpha α 分位数.

引理1: Γ ( s + 1 ) = s Γ ( s ) \Gamma(s+1)=s\Gamma(s) Γ(s+1)=sΓ(s).

p r o o f proof proof: L H S = ∫ 0 ∞ x s e − x d x = − ∫ 0 ∞ x s d ( e − x ) = − x s e − x ∣ 0 ∞ + s ∫ 0 ∞ x s − 1 e − x d x = R H S . LHS=\displaystyle{\int}_0^\infty x^se^{-x}dx=-\displaystyle{\int}_0^\infty x^sd(e^{-x})=-x^se^{-x}\mid_0^\infty+s\displaystyle{\int}_0^\infty x^{s-1}e^{-x}dx=RHS. LHS=0xsexdx=0xsd(ex)=xsex0+s0xs1exdx=RHS.

引理2: ln ⁡ Γ ( s ) \ln\Gamma(s) lnΓ(s) 严格上凸.

p r o o f proof proof: ∀ λ ∈ ( 0 , 1 ) \forall \lambda\in(0,1) λ(0,1), 有
Γ ( λ x + ( 1 − λ ) y ) = ∫ 0 ∞ t λ x + ( 1 − λ ) y − 1 e − t d t = ∫ 0 ∞ [ t x − 1 e − t ] λ [ t y − 1 e − t ] 1 − λ d t ≤ H o l d e r [ ∫ 0 ∞ t x − 1 e − t d t ] λ [ ∫ 0 ∞ t y − 1 e − t d t ] 1 − λ = Γ λ ( x ) Γ 1 − λ ( y ) \begin{split}\Gamma(\lambda x+(1-\lambda)y)&=\displaystyle{\int}_0^\infty t^{\lambda x+(1-\lambda)y-1}e^{-t}dt\\ &=\displaystyle{\int}_0^\infty[t^{x-1}e^{-t}]^\lambda[t^{y-1}e^{-t}]^{1-\lambda}dt\\ &\overset{Holder}{\le}\left[\displaystyle{\int}_0^\infty t^{x-1}e^{-t}dt\right]^\lambda\left[\displaystyle{\int}_0^\infty t^{y-1}e^{-t}dt\right]^{1-\lambda}\\ &=\Gamma^\lambda(x)\Gamma^{1-\lambda}(y)\end{split} Γ(λx+(1λ)y)=0tλx+(1λ)y1etdt=0[tx1et]λ[ty1et]1λdtHolder[0tx1etdt]λ[0ty1etdt]1λ=Γλ(x)Γ1λ(y) 由Holder不等式取等条件可知不等号严格成立, 进一步对不等式两边取对数即可知
ln ⁡ Γ ( λ x + ( 1 − λ ) y ) < λ ln ⁡ Γ ( x ) + ( 1 − λ ) ln ⁡ Γ ( y ) \ln\Gamma(\lambda x+(1-\lambda)y)< \lambda\ln\Gamma(x)+(1-\lambda)\ln\Gamma(y) lnΓ(λx+(1λ)y)<λlnΓ(x)+(1λ)lnΓ(y)

Holder不等式及其证明详见 Holder不等式(赫尔德不等式)

引理3: lim ⁡ x → + ∞ Γ ( x + s ) ( x + δ ) s Γ ( x ) = 1 , ∀ δ ∈ ( − 1 , 1 ) \lim\limits_{x\rightarrow +\infty}\dfrac{\Gamma(x+s)}{(x+\delta)^s\Gamma(x)}=1, \forall \delta\in(-1,1) x+lim(x+δ)sΓ(x)Γ(x+s)=1,δ(1,1).

p r o o f proof proof: 由引理1, 仅需考虑 s ∈ ( 0 , 1 ] s\in(0,1] s(0,1]的情况, 则由引理2可知
Γ ( x + s ) = Γ ( ( 1 − s ) x + s ( x + 1 ) ) ≤ Γ 1 − s ( x ) Γ s ( x + 1 ) = x s Γ ( x ) \Gamma(x+s)=\Gamma((1-s)x+s(x+1))\le \Gamma^{1-s}(x)\Gamma^{s}(x+1)=x^s\Gamma(x) Γ(x+s)=Γ((1s)x+s(x+1))Γ1s(x)Γs(x+1)=xsΓ(x) 可知 Γ ( x + s ) ( x + δ ) s Γ ( x ) ≤ ( x s + δ ) s → 1 ,   x → ∞ \dfrac{\Gamma(x+s)}{(x+\delta)^s\Gamma(x)}\le \left(\dfrac{x}{s+\delta}\right)^s\rightarrow 1,\text{ }x\rightarrow\infty (x+δ)sΓ(x)Γ(x+s)(s+δx)s1, x, 同理有
x Γ ( x ) = Γ ( x + 1 ) = Γ ( s ( x + s ) + ( 1 − s ) ( x + s + 1 ) ) ≤ Γ s ( x + s ) Γ 1 − s ( x + s + 1 ) = ( x + s ) 1 − s Γ ( x + s ) \begin{split}x\Gamma(x)&=\Gamma(x+1)=\Gamma(s(x+s)+(1-s)(x+s+1))\\ &\le \Gamma^s(x+s)\Gamma^{1-s}(x+s+1)=(x+s)^{1-s}\Gamma(x+s)\end{split} xΓ(x)=Γ(x+1)=Γ(s(x+s)+(1s)(x+s+1))Γs(x+s)Γ1s(x+s+1)=(x+s)1sΓ(x+s) 可知 Γ ( x + s ) ( x + δ ) s Γ ( x ) ≥ ( x x + δ ) s ⋅ ( x x + s ) 1 − s → 1 ,   x → ∞ \dfrac{\Gamma(x+s)}{(x+\delta)^s\Gamma(x)}\ge \left(\dfrac{x}{x+\delta}\right)^s\cdot\left(\dfrac{x}{x+s}\right)^{1-s}\rightarrow 1,\text{ }x\rightarrow\infty (x+δ)sΓ(x)Γ(x+s)(x+δx)s(x+sx)1s1, x. 由夹逼原理即可知引理3成立.

下面我们回到原命题的证明,

P r o o f Proof Proof: 设 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n), 则 X X X 的概率密度函数为 p ( x ) = 1 2 n / 2 Γ ( n / 2 ) x n 2 − 1 e − x 2 ,   x > 0 p(x)=\dfrac{1}{2^{n/2}\Gamma(n/2)}x^{\frac n2-1}e^{-\frac x2},\text{ }x>0 p(x)=2n/2Γ(n/2)1x2n1e2x, x>0
其中 Γ ( z ) = ∫ 0 ∞ x z − 1 e − x d x \Gamma(z)=\displaystyle{\int}_0^\infty x^{z-1}e^{-x}dx Γ(z)=0xz1exdx, 考虑 Y = 2 X Y=\sqrt{2X} Y=2X , 则 Y Y Y 的概率密度函数为 q ( y ) = p ( y 2 2 ) y = 1 Γ ( n 2 ) ( y 2 ) n − 1 e − ( y 2 ) 2 ,   y > 0 q(y)=p\left(\frac{y^2}{2}\right)y=\frac{1}{\Gamma(\frac n2)}\left(\frac{y}{2}\right)^{n-1}e^{-(\frac y2)^2},\text{ }y>0 q(y)=p(2y2)y=Γ(2n)1(2y)n1e(2y)2, y>0
E ⁡ Y = ∫ 0 ∞ y q ( y ) d y = ∫ 0 ∞ y Γ ( n 2 ) ( y 2 ) n − 1 e − ( y 2 ) 2 d y = t = ( y 2 ) 2 2 Γ ( n 2 ) ∫ 0 ∞ t n − 1 2 e − t d t = 2 Γ ( n + 1 2 ) Γ ( n 2 ) → 引理 3 取 δ = − 1 4 2 ( n 2 − 1 4 ) 1 2 = 2 n − 1 ,   a . s .   n → ∞ \begin{split}\operatorname{E}Y&=\int_0^\infty yq(y)dy\\ &=\int_0^\infty\frac{y}{\Gamma(\frac n2)}\left(\frac{y}{2}\right)^{n-1}e^{-(\frac y2)^2}dy\\ &\overset{t=(\frac{y}{2})^2}{=}\frac{2}{\Gamma(\frac n2)}\int_0^\infty t^{\frac{n-1}{2}}e^{-t}dt\\ &=\frac{2\Gamma(\frac{n+1}{2})}{\Gamma(\frac n2)}\\ &\underset{取\delta=-\frac 14}{\overset{引理3}{\rightarrow}}2(\frac n2-\frac 14)^{\frac 12}=\sqrt{2n-1},\text{ }a.s.\text{ }n\rightarrow\infty\end{split} EY=0yq(y)dy=0Γ(2n)y(2y)n1e(2y)2dy=t=(2y)2Γ(2n)20t2n1etdt=Γ(2n)(2n+1)δ=41引理32(2n41)21=2n1 , a.s. n 同理
E ⁡ Y 2 = 4 Γ ( n 2 + 1 ) Γ ( n 2 ) = 2 n \operatorname{E}Y^2=\dfrac{4\Gamma(\frac n2+1)}{\Gamma(\frac n2)}=2n EY2=Γ(2n)(2n+1)=2n Var ⁡ Y = E ⁡ Y 2 − ( E ⁡ Y ) 2 = 1 \operatorname{Var}Y=\operatorname{E}Y^2-(\operatorname{E}Y)^2=1 VarY=EY2(EY)2=1. 由 Lindeberg-Levy CLT可知
Y − 2 n − 1 1 → d N ( 0 , 1 ) ,   a . s .   n → ∞ \frac{Y-\sqrt{2n-1}}{1}\overset{d}{\rightarrow}N(0,1),\text{ }a.s.\text{ }n\rightarrow \infty 1Y2n1 dN(0,1), a.s. n 即有
2 χ 2 ( α ) − 2 n − 1 1 ≈ u α ,   a . s .   n → ∞ ( 一般为 n > 45 ) \frac{\sqrt{2\chi^2(\alpha)}-\sqrt{2n-1}}{1}\approx u_\alpha,\text{ }a.s.\text{ }n\rightarrow \infty(一般为n>45) 12χ2(α) 2n1 uα, a.s. n(一般为n>45)
可知 n n n 较大时有 χ α 2 ( n ) ≈ 1 2 ( u α + 2 n − 1 ) 2 \chi^2_{\alpha}(n)\approx \frac 12(u_\alpha+\sqrt{2n-1})^2 χα2(n)21(uα+2n1 )2, 证毕!

证明过程全为本人所写,大家若对上述证明过程有疑问或者发现纰漏欢迎在评论区指正!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值