python实现神经网络多分类_神经网络(NN)实现多分类-----Keras实现

搭建DNN

接下来,笔者将展示如何利用Keras来搭建一个简单的深度神经网络(DNN)来解决这个多分类问题。我们要搭建的DNN的结构如下图所示:

DNN模型的结构示意图

我们搭建的DNN由输入层、隐藏层、输出层和softmax函数组成,其中输入层由4个神经元组成,对应IRIS数据集中的4个特征,作为输入向量,隐藏层有两层,每层分别有5和6个神经元,之后就是输出层,由3个神经元组成,对应IRIS数据集的目标变量的类别个数,最后,就是一个softmax函数,用于解决多分类问题而创建。

对应以上的DNN结构,用Keras来搭建的话,其Python代码如下:

importkeras as K#2. 定义模型

init = K.initializers.glorot_uniform(seed=1)

simple_adam=K.optimizers.Adam()

model=K.models.Sequential()

model.add(K.layers.Dense(units=5, input_dim=4, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=6, kernel_initializer=init, activation='relu'))

model.add(K.layers.Dense(units=3, kernel_initializer=init, a

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是使用 Keras 实现 Multi-Head Self-Attention 的代码示例: ```python from tensorflow import keras from tensorflow.keras import layers class MultiHeadSelfAttention(layers.Layer): def __init__(self, embed_dim, num_heads=8): super(MultiHeadSelfAttention, self).__init__() self.embed_dim = embed_dim self.num_heads = num_heads if embed_dim % num_heads != 0: raise ValueError( f"embed_dim ({embed_dim}) must be divisible by num_heads ({num_heads})" ) self.projection_dim = embed_dim // num_heads self.query_dense = layers.Dense(embed_dim) self.key_dense = layers.Dense(embed_dim) self.value_dense = layers.Dense(embed_dim) self.combine_heads = layers.Dense(embed_dim) def attention(self, query, key, value): score = tf.matmul(query, key, transpose_b=True) dim_key = tf.cast(tf.shape(key)[-1], tf.float32) scaled_score = score / tf.math.sqrt(dim_key) weights = tf.nn.softmax(scaled_score, axis=-1) output = tf.matmul(weights, value) return output, weights def separate_heads(self, x, batch_size): x = tf.reshape(x, (batch_size, -1, self.num_heads, self.projection_dim)) return tf.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): # x.shape = [batch_size, seq_len, embedding_dim] batch_size = tf.shape(inputs)[0] query = self.query_dense(inputs) # (batch_size, seq_len, embed_dim) key = self.key_dense(inputs) # (batch_size, seq_len, embed_dim) value = self.value_dense(inputs) # (batch_size, seq_len, embed_dim) query = self.separate_heads( query, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) key = self.separate_heads( key, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) value = self.separate_heads( value, batch_size ) # (batch_size, num_heads, seq_len, projection_dim) attention, weights = self.attention(query, key, value) attention = tf.transpose( attention, perm=[0, 2, 1, 3] ) # (batch_size, seq_len, num_heads, projection_dim) concat_attention = tf.reshape( attention, (batch_size, -1, self.embed_dim) ) # (batch_size, seq_len, embed_dim) output = self.combine_heads( concat_attention ) # (batch_size, seq_len, embed_dim) return output ``` 在上面的代码中,我们定义了一个名为 `MultiHeadSelfAttention` 的自定义 Keras 层。在 `__init__` 方法中,我们定义了以下变量: - `embed_dim`:嵌入维度。 - `num_heads`:头的数量。 - `projection_dim`:每个头的投影维度。 - `query_dense`、`key_dense` 和 `value_dense`:三个全连接层,用于将输入嵌入到 `embed_dim` 维空间中。 - `combine_heads`:全连接层,用于将多头注意力的输出组合成一个 `embed_dim` 维张量。 在 `call` 方法中,我们首先使用 `query_dense`、`key_dense` 和 `value_dense` 将输入嵌入到 `embed_dim` 维空间中。然后,我们将查询、键和值分别投影到 `num_heads` 个子空间中,并计算每个子空间的注意力输出。最后,我们将 `num_heads` 个子空间的注意力输出组合成一个 `embed_dim` 维张量,并通过 `combine_heads` 层进行组合。 ### 回答2: Keras是一个流行的深度学习库,它提供了方便的API来实现各种神经网络模型。其中,多头自注意力(multi-head self-attention)是一种在自然语言处理中广泛使用的技术,可以用于提取输入序列之间的重要关系。 下面是使用Keras实现多头自注意力的代码示例: ```python import tensorflow.keras as keras from keras.layers import Layer, Dense class MultiHeadSelfAttention(Layer): def __init__(self, n_heads, d_model, **kwargs): super(MultiHeadSelfAttention, self).__init__(**kwargs) self.n_heads = n_heads self.d_model = d_model self.wq = Dense(d_model) self.wk = Dense(d_model) self.wv = Dense(d_model) self.dense = Dense(d_model) def call(self, inputs): q = self.wq(inputs) k = self.wk(inputs) v = self.wv(inputs) q = self.split_heads(q) k = self.split_heads(k) v = self.split_heads(v) attention_weights = keras.layers.dot([q, k], axes=[-1, -1]) attention_weights = keras.layers.Activation('softmax')(attention_weights) output = keras.layers.dot([attention_weights, v], axes=[-1, 1]) output = self.combine_heads(output) output = self.dense(output) return output def split_heads(self, x): batch_size = keras.backend.shape(x)[0] seq_length = keras.backend.shape(x)[1] d_model = self.d_model split_size = d_model // self.n_heads x = keras.backend.reshape(x, (batch_size, seq_length, self.n_heads, split_size)) return keras.backend.permute_dimensions(x, (0, 2, 1, 3)) def combine_heads(self, x): batch_size = keras.backend.shape(x)[0] seq_length = keras.backend.shape(x)[2] d_model = self.d_model x = keras.backend.permute_dimensions(x, (0, 2, 1, 3)) return keras.backend.reshape(x, (batch_size, seq_length, d_model)) ``` 上述代码中,我们创建了一个名为MultiHeadSelfAttention的自定义层,它继承自Keras的Layer类。在构造函数中,我们指定了注意力头数n_heads和模型维度d_model。在call函数中,我们分别通过全连接层将输入序列映射为查询(q)、键(k)和值(v)的表示。然后,我们将这些表示进行头分割,计算注意力权重,并应用这些权重来聚合值。最后,我们通过全连接层将聚合后的结果映射回原始维度。 通过使用上述代码示例,我们可以在Keras中轻松实现多头自注意力机制,并将其用于自然语言处理等任务中。 ### 回答3: Keras是一个流行的深度学习框架,可以用于实现各种神经网络模型,包括self-attention模型。Multi-head self-attention是一种扩展的self-attention模型,用于加强模型对输入数据中不同部分的关注能力。 具体实现multi-head self-attention模型的代码如下: 1. 引入所需的Keras库和模块: ```python from tensorflow import keras from tensorflow.keras.layers import Dense, Input, Dropout, LayerNormalization from tensorflow.keras import Model ``` 2. 定义multi-head self-attention层的类: ```python class MultiHeadSelfAttention(keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadSelfAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model self.depth = int(d_model / num_heads) self.query_dense = Dense(d_model) self.key_dense = Dense(d_model) self.value_dense = Dense(d_model) self.dense = Dense(d_model) def split_heads(self, x, batch_size): x = keras.backend.reshape(x, (batch_size, -1, self.num_heads, self.depth)) return keras.backend.transpose(x, perm=[0, 2, 1, 3]) def call(self, inputs): query = inputs key = inputs value = inputs batch_size = keras.backend.shape(query)[0] query = self.query_dense(query) key = self.key_dense(key) value = self.value_dense(value) query = self.split_heads(query, batch_size) key = self.split_heads(key, batch_size) value = self.split_heads(value, batch_size) scaled_attention_outputs, attention_weights = self.compute_attention(query, key, value) scaled_attention = keras.backend.transpose(scaled_attention_outputs, perm=[0, 2, 1, 3]) concat_attention = keras.backend.reshape(scaled_attention, (batch_size, -1, self.d_model)) outputs = self.dense(concat_attention) return outputs, attention_weights def compute_attention(self, query, key, value): matmul_qk = keras.backend.batch_dot(query, key, axes=[-1, -1]) scaled_attention_logits = matmul_qk / keras.backend.sqrt(keras.backend.cast(self.depth, dtype=keras.backend.floatx())) attention_weights = keras.backend.softmax(scaled_attention_logits) attention_outputs = keras.backend.batch_dot(attention_weights, value, axes=[-1, 2]) return attention_outputs, attention_weights ``` 3. 构建完整的模型: ```python def create_model(d_model=256, num_heads=8): inputs = Input(shape=(seq_length, d_model)) attention_layer = MultiHeadSelfAttention(d_model, num_heads) attention_outputs, attention_weights = attention_layer(inputs) dropout = Dropout(0.1)(attention_outputs) normalization = LayerNormalization(epsilon=1e-6)(dropout) dense = Dense(d_model, activation='relu')(normalization) outputs = Dense(num_classes, activation='softmax')(dense) model = Model(inputs=inputs, outputs=outputs) return model ``` 这段代码实现了一个包含multi-head self-attention层的完整模型,输入shape为(seq_length, d_model),输出为一个softmax分类器的结果。考虑到不同应用场景下的具体要求,可以根据实际需要自定义模型的层数、宽度以及其他配置,来构建一个更适合具体任务的multi-head self-attention模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值